Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 – 8 = 0 ⇔ x2 = 8 ⇔ x = ±√8 ⇔ x = ±2√2
b) 5x2 – 20 = 0 ⇔ 5x2 = 20 ⇔ x2 = 4 ⇔ x = ±2
c) 0,4x2 + 1 = 0 ⇔ 0,4x2 = -1 ⇔ x2 = -: Vô nghiệm
d) 2x2 + √2x = 0 ⇔ x(2x + √2) = 0 ⇔ √2x(√2x + 1) = 0
⇔ x1 = 0 hoặc √2x + 1 = 0
Từ √2x + 1 = 0 => x2 =
Phương trình có 2 nghiệm
x1 = 0, x2 =
e) -0,4x2 + 1,2x = 0 ⇔ -4x2 + 12x = 0 ⇔ -4x(x – 3) = 0
⇔ x1 = 0,
hoặc x2 - 3 = 0 => x2 = 3
Vậy phương trình có 2 nghiệm x1 = 0, x2 = 3
\(5x^3-x^2-5x+1=0\)
\(\Leftrightarrow x^2\left(5x-1\right)-\left(5x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\pm1\end{cases}}}\)
a) x4 – 5x2+ 4 = 0.
Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4
Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.
b) 2x4 – 3x2 – 2 = 0.
Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)
Vậy: x1 = √2; x2 = -√2
c) 3x4 + 10x2 + 3 = 0.
Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)
Phương trình vô nghiệm.
a) x4 – 5x2+ 4 = 0.
Đặt x2 = t ≥ 0, ta có: t2 – 5t + 4 = 0; t1 = 1, t2 = 4
Nên: x1 = -1, x2 = 1, x3 = -2, x4 = 2.
b) 2x4 – 3x2 – 2 = 0.
Đặt x2 = t ≥ 0, ta có: 2t2 – 3t – 2 = 0; t1 = 2, t2 = (loại)
Vậy: x1 = √2; x2 = -√2
c) 3x4 + 10x2 + 3 = 0.
Đặt x2 = t ≥ 0, ta có: 3t2 + 10t + 3 = 0; t1 = -3(loại), t2 = (loại)
Phương trình vô nghiệm.
nhớ like
a) => 5x^2 - 3 = 2 hoặc 5x^2 - 3 = -2
=> 5x^2 = 5 hoặc 5x^2 = 1
b) pt <=> l(x-1)^2l = x + 2
VÌ ( x - 1 )^2 >= 0 => l( x - 1 )^2 l = ( x- 1 )^2
pt <=> x^2 - 2x + 1 = x + 2 <=>
x^2 - 3x - 1 = 0
c) l2x-5l - l2x^2 - 7x + 5 l = 0
<=> l2x-5l - l ( 2x-5)(x-1) l = 0
<=> l2x-5l ( 1 - l x - 1 l = 0
<=> l 2x - 5 l = 0 hoặc 1 - l x - 1 l = 0
d); e lập bảng xét dấu sau đó xét ba trường hợ p ra
\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)
\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)
Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d
b) \(2x^4+5x^3+x^2+5x+2=0\)
Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:
\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)
\(\Leftrightarrow2y^2+5y-3=0\)
PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3
Với y=1/2 thì không tìm được x
Với y=-3 thì tìm được 2 nghiệm, tự giải
a, \(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow12x^3-10x^2-2x=0\)
\(\Leftrightarrow6x^3-5x^2-x=0\)
\(\Leftrightarrow x\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x^2-5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{-\dfrac{1}{6};0;1\right\}\)
b, \(5x^3-x^2-5x+1=0\)
\(\Leftrightarrow x^2\left(5x-1\right)-\left(5x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1;\dfrac{1}{5};1\right\}\)
\(a,1,2x^3-x^2-0,2x=0\Leftrightarrow x\left(1,2x^2-x-0,2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\1,2x^2-x-0,2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{-1}{6}\end{matrix}\right.\)
\(b,5x^3-x^2-5x+1=0\Leftrightarrow x^2\left(5x-1\right)-\left(5x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\\x=-1\end{matrix}\right.\)