Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tương đương với :
\(4\left(2^{2x}+2^{-2x}\right)-4\left(2^x+2^{-x}\right)-7=0\)
Đặt \(t=2^{2x}+2^{-2x}\) ta có : \(t^2=2^{2x}+2^{-2x}+2\)
Phương trình trở thành :
\(4\left(t^2-2\right)-4t-7=0\)
\(\Leftrightarrow4t^2-4t-15=0\)
\(\Leftrightarrow t=\frac{5}{2}\) ( thỏa mãn) hoặc \(t=-\frac{3}{2}\) (loại)
Với \(t=\frac{5}{2}\) ta có : \(2^x+2^{-x}=\frac{5}{2}\)
Đặt \(u=2^x,u>0\Rightarrow\frac{1}{u}=2^{-x}\)
Phương trình trở thành : \(u+\frac{1}{u}=\frac{5}{2}\Rightarrow2u^2+5u+2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}u=2\\u=\frac{1}{2}\end{array}\right.\)
Khi \(u=2\Rightarrow2^x=2\Leftrightarrow x=1\)
Khi \(u=\frac{1}{2}\Rightarrow2^x=\frac{1}{2}\Leftrightarrow x=-1\)
Vậy phương trình có 2 nghiệm : \(x=\pm1\)
\(\Leftrightarrow\) \(\begin{cases}-5\le x\le4\\-7\le x\le0\\4\le x\le5\end{cases}\) \(\Leftrightarrow\) \(-7\le x\le5\)
Vậy tập nghiệm là \(\left[-7;5\right]\)
Viết lại phương trình dưới dạng :
\(4^{x^2-3x+2}+4^{2x^2+6x+5}=4^{x^2-3x+2}.4^{2x^2+6x+5}+1\)
Đặt \(\begin{cases}u=4^{x^2-3x+2}\\v=4^{2x^2+6x+5}\end{cases}\)\(;u,v>0\)
Khi đó phương trình tương đương với :
\(u+v=uv+1\Leftrightarrow\left(u-1\right)\left(1-v\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}u=1\\v=1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}4^{x^2-3x+2}=1\\4^{2x^2+6x+5}=1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2-3x+2=0\\2x^2+6x+5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\\x=-1\\x=-5\end{array}\right.\)
a)
Pt\(\Leftrightarrow\left\{{}\begin{matrix}3x-4=\left(x-3\right)^2\\x-3\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-4=x^2-6x+9\\x\ge3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+13=0\\x\ge3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{29}}{2}\\x_2=\dfrac{9-\sqrt{29}}{2}\end{matrix}\right.\\x\ge3\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{9+\sqrt{29}}{2}\)
Vậy \(x=\dfrac{9+\sqrt{29}}{2}\) là nghiệm của phương trình.
b) Pt \(\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+3=\left(2x-1\right)^2\\2x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-2=0\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{7}}{3}\\x_2=\dfrac{1-\sqrt{7}}{3}\end{matrix}\right.\\x\ge\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{7}}{3}\)
Vậy phương trình có duy nhất nghiệm là: \(x=\dfrac{1+\sqrt{7}}{3}\)
1) ĐK: \(x\ge-1\)
\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)
<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)
TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)
(1) luôn đúng
Th2: x\(>-\frac{1}{3}\)
<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)
<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)
<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm
Vì với x \(>-\frac{1}{3}\):
ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)
\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)
=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x
=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)
Vậy \(x< -\frac{1}{3}\)
Xin lỗi bạn kết luận bài 1 là:
\(-1\le x\le-\frac{1}{3}\)
Bài 2) \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)
ĐK: \(x\ge-2\)
(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)
<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)
<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)
<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)
<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)
<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)
(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)
(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)
Kết luận:...
Điều kiện của phương trình là 4 x 2 + 7 x - 2 ≥ 0 và x ≠ -2. Ta có
Phương trình cuối có hai nghiệm là x 1 = 5/2, x 2 = -2
Chỉ có giá trị x 1 = 5/2, x 2 = -2
Chỉ có giá trị x 1 = 5/2 thỏa mãn điều kiện và nghiệm đúng phương trình đã cho.
Đáp số: x = 5/2