K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

1) ĐK: \(x\ge-1\)

\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)

<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)

TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)

(1) luôn đúng 

Th2: x\(>-\frac{1}{3}\)

<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)

<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)

<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm 

 Vì với x \(>-\frac{1}{3}\)

ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)

\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)

=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x

=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)

Vậy \(x< -\frac{1}{3}\)

26 tháng 2 2020

Xin lỗi bạn kết luận bài 1 là:

\(-1\le x\le-\frac{1}{3}\)

Bài 2)  \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)

ĐK: \(x\ge-2\)

(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)

<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)

<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)

<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)

<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)

<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)

(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)

(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)

Kết luận:...

NV
10 tháng 5 2020

1.

- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)

- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)

Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)

2.

Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)

3.

\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)

4.

\(4x^2+4x+1-3x+9>4x^2+10\)

\(\Leftrightarrow x>0\)

5.

\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)

6.

\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)

10 tháng 5 2020

K hiểu c3 cho lắm sao có 23/5 .Giải thích đc k bạn.

30 tháng 12 2022

Bài 3:

a: TH1: m=-2

=>-2(-2-1)x+4<0

=>6x+4<0

=>x<-4/6(loại)

TH2: m<>-2

\(\text{Δ}=\left(2m-2\right)^2-16\left(m+2\right)\)

=4m^2-8m+4-16m-32

=4m^2-24m-28

Để BPT vô nghiệm thì \(\left\{{}\begin{matrix}4m^2-24m-28< =0\\m+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< =m< =7\\m>-2\end{matrix}\right.\Leftrightarrow-1< =m< =7\)

b: TH1: m=3

=>5x-4>0

=>x>4/5(loại)

TH2: m<>3

Δ=(m+2)^2-4*(-4)(m-3)

\(=m^2+4m+4+16m-48=m^2+20m-44\)

Để bất phương trình vô nghiệm thì

\(\left\{{}\begin{matrix}m^2+20m-44< =0\\m-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-22< =m< =2\\m< 3\end{matrix}\right.\Leftrightarrow-22< =m< =2\)

9 tháng 2 2019

\[\left| {2x - 3} \right| > x + 1\\ \Leftrightarrow \left| {2x - 3} \right| - x > 1\\ T{H_1}:2x - 3 \ge 0 \Rightarrow x \ge {3 \over 2}\\ 2x - 3 - x > 1\\ \Leftrightarrow x - 3 > 1\\ \Leftrightarrow x > 4\left( {TM} \right)\\ T{H_2}:2x - 3 < 0 \Rightarrow x < {3 \over 2}\\ - \left( {2x - 3} \right) - x > 1\\ \Leftrightarrow - 2x + 3 - x > 1\\ \Leftrightarrow - 3x > - 2\\ \Leftrightarrow x < {2 \over 3}\left( {TM} \right)\]

1. Tìm tập nghiệm của bất pt |2x-5|<3? 2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..? 3. Nghiệm của bpt |2x-3|≤1 là? 4. Bpt |3x-4| ≤2 có nghiệm là? 5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..? 6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là? 7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là? 8. Cho biểu...
Đọc tiếp

1. Tìm tập nghiệm của bất pt |2x-5|<3?
2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..?
3. Nghiệm của bpt |2x-3|≤1 là?
4. Bpt |3x-4| ≤2 có nghiệm là?
5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..?
6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là?
7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là?
8. Cho biểu thức f(x)=1- (2-x/3x-2). Tập hợp tất cả các gtrị của X thỏa mãn bpt f(x)≤0 là?
9. Tập nghiệm của bpt (x-1/x-3)-1<0 là?
10. Số x=2 là nghiệm của bpt nào sau đây:
a) 4-X<1 b) 2X+1<3
c) 3X-7>X d)5X-2>3
11. Tập nghiệm của bpt -4x+1/3x+1≤-3 là?
12. Với X thuộc tập hợp nào thì nhị thức bật nhất f(x)-(x-1)(x+3) không âm?
13. Tập nghiệm S=(-4;5) là tập nghiệm của bpt nào dưới đây:
a)(x+4)(x+5)<0
b)(x+4)(5x-25)<0
c)(x+4)(5x-25)≥0
d) (x-4)(x-5) <0
14. Tổng các tập nghiệm của bpt (x+3)(x-1)≤ 0 là?

GIẢI RA HẾT DÙM EM VỚI Ạ :((

0