\(\dfrac{4-x}{x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

123764

AH
Akai Haruma
Giáo viên
12 tháng 4 2018

Lời giải:

Ta có:

\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x-y=by-ax\\ z=ax+by\end{matrix}\right.\)

\(\Rightarrow x-y+z=2by\Rightarrow b=\frac{x+z-y}{2y}\)

Hoàn toàn tương tự ta nhận được:

\(a=\frac{y+z-x}{2x};c=\frac{x+y-z}{2z}\)

Suy ra:

\(\left\{\begin{matrix} a+1=\frac{x+y+z}{2x}\\ b+1=\frac{x+y+z}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)

\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\) (ĐPCM)

8 tháng 1 2018

Có:

\(x+y+z=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x=y+z\\-y=x+z\\-z=x+y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\left(y+z\right)^2\\y^2=\left(x+z\right)^2\\z^2=\left(x+y\right)^2\end{matrix}\right.\)

\(\Rightarrow ax^2+by^2+cz^2\)

\(=a\left(y+z\right)^2+b\left(x+z\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(a+c\right)+z^2\left(a+b\right)+2\left(ayz+bxz+cxy\right)\)

\(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)

Đồng thời có: \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Từ đây ta có:)

\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)

\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)

30 tháng 9 2018

5 dòng cuối mk ko hiểu

18 tháng 4 2017

Ta có: \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)

<=> \(12\left(\dfrac{3x-2}{6}-5\right)=12.\dfrac{3-2\left(x+7\right)}{4}\)

<=> \(6x-4-60=9-6\left(x+7\right)\)

<=> \(6x-64=9-6x-42\)

<=> \(6x-64=-6x-33\)

<=> \(6x+6x-64+33=0\)

<=> 12x-31=0

vậy \(\dfrac{3x-2}{6}-5=\dfrac{3-2\left(x+7\right)}{4}\)

<=> 12x-31=0

11 tháng 11 2017

Câu a :

Từ \(m^2+mx\ge2x+4\)

\(\Rightarrow m^2+mx-2x-4\ge0\)

\(\Leftrightarrow m^2+\left(m-2\right)x-4\ge0\)

ĐKXĐ : \(m\ne0\)

Ta có:

\(\Delta=\left(m-2\right)^2-4.\left(-4\right)=\left(m-2\right)^2+16\ge16>0\)

Vậy.....................