\(\sqrt{x-2}\) ≤ 2 + \(\sqrt{x-2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 3 2022

ĐKXĐ: \(x\ge2\)

BĐT trở thành:

\(x+\sqrt{x-2}\le2+\sqrt{x-2}\Rightarrow x\le2\)

Kết hợp điều kiện ban đầu ta được: \(x=2\)

Vậy BPT có nghiệm duy nhất \(x=2\)

NV
30 tháng 5 2020

a/ ĐKXĐ \(x\ge1\)

\(\Leftrightarrow2x+1+2\sqrt{x^2+x-2}< 3x+3\)

\(\Leftrightarrow2\sqrt{x^2+x-2}< x+2\)

\(\Leftrightarrow4\left(x^2+x-2\right)< \left(x+2\right)^2\)

\(\Leftrightarrow3x^2< 12\Leftrightarrow x^2< 4\Rightarrow-2< x< 2\)

Vậy nghiệm của BPT là \(1\le x< 2\)

b/ ĐKXĐ: \(x\ge3\)

\(\Leftrightarrow3x-2+2\sqrt{2x^2-5x-3}< 5x-4\)

\(\Leftrightarrow\sqrt{2x^2-5x-3}< x-1\)

\(\Leftrightarrow2x^2-5x-3< x^2-2x+1\)

\(\Leftrightarrow x^2-3x-4< 0\Rightarrow-1< x< 4\)

\(\Rightarrow3\le x< 4\)

c/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow3x+1+2\sqrt{2x^2+3x-2}\ge6x-1\)

\(\Leftrightarrow2\sqrt{2x^2+3x-2}\ge3x-2\)

- Với \(\frac{1}{2}\le x< \frac{2}{3}\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge\frac{2}{3}\) hai vế ko âm

\(\Leftrightarrow4\left(2x^2+3x-2\right)\ge\left(3x-2\right)^2\)

\(\Leftrightarrow x^2-24x+12\le0\) \(\Rightarrow\frac{2}{3}\le x\le12+2\sqrt{33}\)

Nghiệm của BPT là \(\frac{1}{2}\le x\le12+2\sqrt{33}\)

30 tháng 5 2020

Biết là hơi làm phiền nhưng anh có thể giúp em được k ạ :

Câu hỏi của Hàn Thất - Toán lớp 7 | Học trực tuyến

NV
18 tháng 4 2020

ĐKXĐ: \(-2\le x\le\frac{5}{2}\)

\(\Leftrightarrow\sqrt{x+2}< \sqrt{3-x}+\sqrt{5-2x}\)

\(\Leftrightarrow x+2< -3x+8+2\sqrt{2x^2-11x+15}\)

\(\Leftrightarrow2x-3< \sqrt{2x^2-11x+15}\)

- Với \(-2\le x< \frac{3}{2}\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge\frac{3}{2}\) hai vế ko âm, bình phương:

\(4x^2-12x+9< 2x^2-11x+15\)

\(\Leftrightarrow2x^2-x-6< 0\Rightarrow-\frac{3}{2}< x< 2\) \(\Rightarrow\frac{3}{2}\le x< 2\)

Kết hợp lại ta được nghiệm của BPT: \(-2\le x< 2\)

NV
14 tháng 3 2020

a/ ĐKXĐ: ....

\(VT=\sqrt{11+x}+\sqrt{1-x}\ge\sqrt{11+x+1-x}=\sqrt{12}\)

\(VP=2-\frac{x^2}{4}\le2< \sqrt{12}\)

\(\Rightarrow VP< VT\Rightarrow\) BPT vô nghiệm

b/

ĐKXĐ: ...

- Với \(x\le0\Rightarrow VT\le0< VP\Rightarrow\) BPT vô nghiệm

- Với \(x>0\) \(\Rightarrow x>2\) hai vế đều dương, bình phương:

\(x^2+\frac{4x^2}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}>45\)

\(\Leftrightarrow\frac{x^4}{x^2-4}+\frac{4x^2}{\sqrt{x^2-4}}-45>0\)

Đặt \(\frac{x^2}{\sqrt{x^2-4}}=t>0\)

\(\Rightarrow t^2+4t-45>0\Rightarrow\left[{}\begin{matrix}t< -9\left(l\right)\\t>5\end{matrix}\right.\)

\(\Rightarrow\frac{x^2}{\sqrt{x^2-4}}>5\Leftrightarrow x^4>25\left(x^2-4\right)\)

\(\Leftrightarrow x^4-25x^2+100>0\Rightarrow\left[{}\begin{matrix}x^2< 5\\x^2>20\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2< x< \sqrt{5}\\x>2\sqrt{5}\end{matrix}\right.\)

NV
14 tháng 3 2020

c/

ĐKXĐ: \(-2\le x\le2\)

Do \(-2\le x\le2\Rightarrow x+2\ge0\Rightarrow VT\ge0\) \(\forall x\)

\(VP=-2x-8=-2\left(x+2\right)-4\le-4< 0\)

\(\Rightarrow VP< VT\)

Vậy BPT đã cho vô nghiệm

26 tháng 4 2019

1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)

ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)

\(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0

\(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0

\(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0

\(\sqrt{6x^2-18x+12}-6\) > 0

\(\sqrt{6x^2-18x+12}>6\)

\(6x^2-18x+12>36\)

\(6x^2-18x-24>0\)

\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)

đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)

b) ĐKXĐ: \(\forall x\) ϵ R

\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)

\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)

Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)

NV
3 tháng 4 2020

a/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge2\\x\ne\left\{3;11\right\}\end{matrix}\right.\)

Đặt \(\sqrt{x-2}=t\ge0\)

\(\Rightarrow\frac{3}{t-1}\ge\frac{5}{t-3}\)

\(\Leftrightarrow\frac{3}{t-1}-\frac{5}{t-3}\ge0\)

\(\Leftrightarrow\frac{3t-9-5t+5}{\left(t-1\right)\left(t-3\right)}\ge0\)

\(\Leftrightarrow\frac{-2t-4}{\left(t-1\right)\left(t-3\right)}\ge0\)

\(\Leftrightarrow\frac{t+2}{\left(t-1\right)\left(t-3\right)}\le0\)

\(\Leftrightarrow1< t< 3\)

\(\Rightarrow1< \sqrt{x-2}< 3\)

\(\Leftrightarrow1< x-2< 9\Rightarrow3< x< 11\)

NV
3 tháng 4 2020

b/

ĐKXĐ: \(x\ge3\)

- Với \(x=3\) BPT thỏa mãn

- Với \(x>3\Rightarrow\sqrt{x-3}>0\) BPT tương đương

\(x-\frac{1}{2-x}\le0\Leftrightarrow x+\frac{1}{x-2}\le0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x-2}\le0\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}\le0\Rightarrow\) không tồn tại x thỏa mãn

Vậy BPT có nghiệm duy nhất \(x=3\)