\(\dfrac{x+1}{a}+ax>\dfrac{x+2}{a}-2x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

\(\dfrac{x+1}{a}+ax>\dfrac{x+2}{a}-2x\)

\(\dfrac{x}{a}+\dfrac{1}{a}+ax>\dfrac{x}{a}+\dfrac{2}{a}-2x\) ( a # 0)

\(ax+2x>\dfrac{2}{a}-\dfrac{1}{a}\)

\(x\left(a+2\right)>\dfrac{1}{a}\) ( 1)

+) Với : a = -2 , ta có :

( 1) ⇔ 0x > \(\dfrac{-1}{2}\) ( Luôn đúng )

+) Với : a > -2 , ta có :

( 1) ⇔x > \(\dfrac{1}{a\left(a+2\right)}\)

+) Với : a < - 2 , ta có :

⇔ x < \(\dfrac{1}{a\left(a+2\right)}\)

KL...

17 tháng 11 2017

Điều kiện xác định của bất phương trình là a ≠0

Biến đổi :

\(\dfrac{x+1}{a}+ax>\dfrac{x+2}{a}-2x\)

\(\Leftrightarrow\dfrac{x}{a}+\dfrac{1}{a}+ax>\dfrac{x}{a}+\dfrac{2}{a}-2x\)

\(\Leftrightarrow ax+2x>\dfrac{x}{a}-\dfrac{x}{a}+\dfrac{2}{a}-\dfrac{1}{a}\)

\(\Leftrightarrow ax+2x>\dfrac{2}{a}-\dfrac{1}{a}\)

\(\Leftrightarrow\left(a+2\right)x>\dfrac{1}{a}\)

Nếu a>-2, a≠0 thì nghiệm của bất phương trình là x > \(\dfrac{1}{a\left(a+2\right)}\)

Nếu a < -2 thì nghiệm của bất phương trình là x < \(\dfrac{1}{a\left(a+2\right)}\)

Nếu a = -2 thì nghiệm của bất phương trình là 0x\(>-\dfrac{1}{2}\),

Nghiệm đúng với mọi x

20 tháng 11 2017

thật là thất vọng sao lúc bạn trả lời mình lại off nhỉ

4 tháng 4 2018

a.Ta có : \(\dfrac{x^2-4x+4}{x^3-2x^2-4x+8}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\)

Để \(\dfrac{1}{x+2}>0\) thì 1 và x+2 cùng dấu

mà 1>0

=>x + 2 > 0 <=> x > 2

\(\Rightarrow S=\left\{x|x>2\right\}\)

b, Ta có : \(x^2\ge0\Rightarrow x^2+1>0\)

Để \(\dfrac{7-8x}{x^2+1}>0\) thì 7 - 8x và \(x^2+1\) cùng dấu

\(x^2+1>0\Rightarrow7-8x>0\Leftrightarrow x< \dfrac{7}{8}\)

\(\Rightarrow S=\left\{x|x< \dfrac{7}{8}\right\}\)

c. Ta có bảng xét dấu:

x -\(\infty\) -1 -\(\dfrac{1}{2}\) +\(\infty\)
x+1 - 0 + +
2x+1 - - 0 +
\(\dfrac{2x+1}{x+1}\) + \(//\) - 0 +

4 tháng 4 2018

Bổ xung câu c:

Vậy : \(-1< x\le\dfrac{-1}{2}\)

a: =>-12x>12

hay x<-1

b: =>7(3x-1)-252>=21x+3(6x+1)

=>21x-7-252>=21x+18x+3

=>18x+3<=-259

=>18x<=-262

hay x<=-131/9

c: =>3(3x+5)-24x<=48+4(x+8)

=>9x+15-24x<=48+4x+32=4x+80

=>-15x+24<=4x+80

=>-19x<=56

hay x>=-56/19

25 tháng 6 2018

\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)

\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)

\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)

\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)

\(\Leftrightarrow2x-13< 0\)

\(\Leftrightarrow x< \dfrac{13}{2}\)

KL...............

\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)

\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)

\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)

\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)

\(\Leftrightarrow-19x+114< 0\)

\(\Leftrightarrow x>6\)

KL..................

25 tháng 6 2018

Câu 4 :

Ta có :

\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)

\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)

Theo BĐT Bu - nhi a - cốp xki ta có :

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)

Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)

\(\Leftrightarrow3x^2=4x^2-8x+4\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Delta=64-16=48>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)

5 tháng 5 2018

a/ \(\dfrac{2x-3}{x+5}\ge2\) ( ĐKXĐ : \(x\ne-5\) )

\(\Rightarrow2x-3\ge2\left(x+5\right)\)

\(\Leftrightarrow2x-3\ge2x+10\)

\(\Leftrightarrow0x\ge13\) ( vô lí ) . Vậy bất phương trình đã cho vô nghiệm.

5 tháng 5 2018

Ôn tập: Bất phương trình bậc nhất một ẩnÔn tập: Bất phương trình bậc nhất một ẩnÔn tập: Bất phương trình bậc nhất một ẩn

30 tháng 4 2018

\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)

\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)

\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)

Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)

20 tháng 5 2017

Mk thấy mấy cái này dễ mà, toàn trong sách giáo khoa hết á. Bạn cố gắng đọc và lm đi. Sắp lên lớp 9 rồi đó ucche

23 tháng 5 2017

a)\(\dfrac{2x^2+10}{1-x}\le0\Rightarrow1-x< 0\Leftrightarrow x>1\)

b) \(\dfrac{3x-4}{x+2}\ge4\Leftrightarrow\dfrac{3x-4}{x+2}-\dfrac{4\left(x+2\right)}{x+2}\ge0\Leftrightarrow\dfrac{-x-12}{x+2}\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x-12\le0\\x+2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-12\\x< -2\end{matrix}\right.\Leftrightarrow-12\le x< -2}}\\\left\{{}\begin{matrix}-x-12\ge0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-12\\x>-2\end{matrix}\right.\end{matrix}\right.\)\(S=\left\{x|-12\le x< -2\right\}\)

c) \(\dfrac{1}{x+4}\le\dfrac{1}{x-2}\Leftrightarrow\dfrac{6}{\left(x+4\right)\left(x-2\right)}\le0\Rightarrow\left(x+4\right)\left(x-2\right)< 0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+4>0\\x-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-4\\x< 2\end{matrix}\right.\Leftrightarrow-4< x< 2}}\\\left\{{}\begin{matrix}x+4< 0\\x-2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x>2\end{matrix}\right.\end{matrix}\right.\)

\(S=\left\{x|-4< x< 2\right\}\)

29 tháng 4 2018

a) \(\dfrac{2x-5}{3}-\dfrac{3x-1}{2}\)<\(\dfrac{3-x}{5}-\dfrac{2x-1}{4}\)

=> 20(2x-5)-30(3x-1)<12(3-x)-15(2x-1)

<=>40x-100-90x+30<36-12x-30x+15

<=>-50x-70<51-42x

<=>-50x+42x<51+70

<=> -8<121

<=>x>\(\dfrac{-121}{8}\)

=> S={x|x>\(\dfrac{-121}{8}\)}

29 tháng 4 2018

b) 5x-\(\dfrac{3-2x}{2}\)>\(\dfrac{7x-5}{2}\)+x

=> 10x-(3-2x)>7x-5+2x

<=>10x-3+2x>7x-5+2x

<=>10x-3>7x-5

<=>10x-7x>-5+3

<=>3x>-2

<=>x>\(\dfrac{-2}{3}\)

=>S={x|x>\(\dfrac{-2}{3}\)}