Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)
\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)
Áp dụng bất đẳng thức Bunhiacopxki ta có;
\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)
\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
\(x\ge m\)
\(\sqrt{x-m+2\sqrt{m\left(x-m\right)}+m}+\sqrt{x-m-2\sqrt{m\left(x-m\right)}+m}\le2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-m}+\sqrt{m}\right)^2}+\sqrt{\left(\sqrt{x-m}-\sqrt{m}\right)^2}\le2\)
\(\Leftrightarrow\sqrt{x-m}+\sqrt{m}+\left|\sqrt{x-m}-\sqrt{m}\right|\le2\)
- Nếu \(\sqrt{x-m}\ge\sqrt{m}\Leftrightarrow x\ge2m\) BPT trở thành:
\(2\sqrt{x-m}\le2\Leftrightarrow x\le m+1\Rightarrow2m\le x\le m+1\)
\(\Rightarrow m+1\ge2m\Rightarrow m\le1\)
- Nếu \(\sqrt{x-m}< \sqrt{m}\Leftrightarrow m\le x< 2m\) BPT trở thành:
\(2\sqrt{m}\le2\Rightarrow m\le1\)
Vậy nếu \(0< m\le1\) thì BPT có nghiệm \(m\le x\le m+1\)
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
a) \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)
b) \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)
d) \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)
e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)
a: \(A=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}=10\)
b: \(B=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}=-2\sqrt{y}\)
c: \(C=\dfrac{\sqrt{3}-1}{\sqrt{6}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
\(\sqrt{x+6}-2\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x+6}>2\sqrt{x}\)
\(\Leftrightarrow x+6>4x\)
\(\Leftrightarrow-3x>-6\)
\(\Leftrightarrow x<2\)
Vậy nghiệm của BPT là x<2