![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)
ta có: (-6).\(\sqrt{6x^2-18x+12}\) > \(6x^2-18x-60\)
⇔ \(6x^2-18x+12\) + \(2.3.\sqrt{6x^2-18x+12}+9-81\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+3\right)^2-9^2\) > 0
⇔ \(\left(\sqrt{6x^2-18x+12}+12\right).\left(\sqrt{6x^2-18x+12}-6\right)\) > 0
⇔ \(\sqrt{6x^2-18x+12}-6\) > 0
⇔ \(\sqrt{6x^2-18x+12}>6\)
⇔\(6x^2-18x+12>36\)
⇔ \(6x^2-18x-24>0\)
⇔\(\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)
đối chiếu ĐKXĐ ban đầu ta được: x ϵ (-∞;-1) \(\cup\)(4;+∞)
b) ĐKXĐ: \(\forall x\) ϵ R
\(\left(x-2\right)\sqrt{x^2+4}-\left(x-2\right)\left(x+2\right)\le0\)
⇔\(\left(x-2\right)\left(\sqrt{x^2+4}-x-2\right)\le0\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\\sqrt{x^2+4}-x-2\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\\sqrt{x^2+4}-x-2\ge0\end{matrix}\right.\end{matrix}\right.\)⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x^2+4\le x^2+4x+4\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2+4\ge x^2+4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\le0\end{matrix}\right.\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x\ge2\\x\le0\end{matrix}\right.\)
Đối chiếu ĐKXĐ ta được x ϵ ( -∞;0) \(\cup\)( 2; +∞)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. \(\sqrt{\left(x-1\right)\left(4-1\right)}>x-2\) ⇔ \(\sqrt{-x^2+5x-4}>x-2\)
ĐK: 1 ≤ x ≤ 4 (1)
BPT ⇔ \(\left[{}\begin{matrix}x-2< 0\\\left\{{}\begin{matrix}x-2>0\\-x^2+5x-4>x^2-4x+4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x< 2\\\left\{{}\begin{matrix}x>2\\\frac{9-\sqrt{17}}{4}< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x< 2\\2< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\) (2)
Từ (1), (2) suy ra: \(\left[{}\begin{matrix}1\le x< 2\\2< x< \frac{9+\sqrt{17}}{4}\end{matrix}\right.\) ⇔ x ∈ (1; \(\frac{9+\sqrt{17}}{4}\))\(|\left\{2\right\}\)
b. ĐK: -3 ≤ x ≤ 4 (1)
BPT ⇔ \(\left\{{}\begin{matrix}x-11\ge0\\12+x-x^2\le\left(x-11\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x\ge11\\\forall x\end{matrix}\right.\) ⇔ x ≥ 11 (2)
Từ (1), (2) suy ra: BPT vô nghiệm
c. ĐK: x ≤ -2, x ≥ 2 (1)
BPT ⇔ (x -3)\(\sqrt{x^2-4}\) ≤ (x - 3)(x + 3)
- Xét x = 3 là nghiệm của BPT (2)
- Xét x≠ 3, BPT ⇔ \(\sqrt{x^2-4}\) ≤ x + 3
⇔ \(\left\{{}\begin{matrix}x+3\ge0\\x^2-4\le\left(x+3\right)^2\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x\ge-3\\x\ge\frac{-5}{2}\end{matrix}\right.\) ⇔ x ≥ \(\frac{-5}{2}\) (3)
Từ (1), (2), (3) suy ra BPT có nghiệm: x ∈ \([\frac{-5}{2};4]\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\left(2x-3\right)\left(3x-4\right)\left(5x+2\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}-\frac{2}{3}< x< \frac{4}{3}\\x>\frac{3}{2}\end{matrix}\right.\)
b/ \(\Leftrightarrow24x^2-10x-25< 0\)
\(\Rightarrow-\frac{5}{6}< x< \frac{5}{4}\)
c/ \(\frac{4x\left(3x+2\right)}{2x+5}>0\Rightarrow\left[{}\begin{matrix}-\frac{5}{2}< x< -\frac{2}{3}\\x>0\end{matrix}\right.\)
d/ \(\Leftrightarrow\frac{3x+2}{2x-5}-\frac{2x-5}{3x+2}\ge0\)
\(\Leftrightarrow\frac{\left(3x+2\right)^2-\left(2x-5\right)^2}{\left(2x-5\right)\left(3x+2\right)}\ge0\)
\(\Leftrightarrow\frac{\left(5x-2\right)\left(x+7\right)}{\left(2x-5\right)\left(3x+2\right)}\ge0\Rightarrow\left[{}\begin{matrix}x\le-7\\-\frac{2}{3}< x\le\frac{2}{5}\\x>\frac{5}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(2x^3+x+3>0\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)>0\Leftrightarrow x+1>0\) \(\left(x^2-2x+3>0\forall x\in R\right)\)
\(\Leftrightarrow x>-1\)
Nghiệm của $VT(*)$ là $S=(-1;+\infty)$
b/ \(x^2\left(x^2+3x-4\right)\ge0\) $(*)$
$VT(*) có nghiệm kép là $0$ và nghiệm đơn là $1;-4$. Ta có BXD:
- + -4 0 1 + - - + 0 0 0 x VT(*)
Từ BXD suy ra bất phương trình có tập nghiệm $S={0} \cup (-\infty;-4] \cup [1;+\infty)$