\(^2\)-4x+3≤0

b)9x\(^2\)-6x≥0

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019

a. \(x^2-4x+3\le0\)

\(\Leftrightarrow\left(x^2-x\right)-\left(3x-3\right)\le0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\le0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le1\\x\ge3\end{matrix}\right.\left(Vo.li\right)\\\left\{{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\end{matrix}\right.\)

Vậy \(1\le x\le3\)

b. \(9x^2-6x\ge0\)

\(\Leftrightarrow3x\left(3x-2\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\ge0\\3x-2\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3x\le0\\3x-2\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x\ge\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le0\\x\le\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

Vậy \(0\le x\le\frac{2}{3}\)

c. Câu c cậu tự làm nha, tớ đang có việc. Quy đồng lên rồi tính bình thường thôi.

7 tháng 3 2019

1. Thay x = -5 vào phương trình

\(-10m=\frac{1}{2m}+30\Rightarrow-10m-\frac{1}{2m}-30=0\Rightarrow\frac{20m^2-1-60m}{2m}=0\)

\(\Rightarrow20m^2-60m-1=0\Rightarrow20\left(m^2-3m+\frac{9}{4}\right)=46\Rightarrow\left(m-\frac{3}{2}\right)^2=46\)

\(\Rightarrow m-\frac{3}{2}=\sqrt{46}\Rightarrow m=\sqrt{46}+\frac{3}{2}\)

2) Tìm nghiệm của phương trình

\(\left(x+1\right)\left(x-1\right)-\left(x+2\right)=3\), có nghiệm của \(6x-5m=3+3m\) gấp 3 lần, bài toán lại quay trở về giống như bài trên

7 tháng 3 2019

3.a)\(\Leftrightarrow9x^2+54x-9x^2+6x-1=1\)

\(\Leftrightarrow60x=2\Leftrightarrow x=\frac{1}{30}\)

Vậy pt có tập nghiệm là S=\(\left\{\frac{1}{30}\right\}\).

b)\(\Leftrightarrow32x-16x^2-16x^2+40x-25=2\)

\(\Leftrightarrow-32x^2+72x-27=0\)

\(\Leftrightarrow32x^2-72x+27=0\)

Có: \(\Delta=\left(-72\right)^2-4.32.27=1728\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{72+\sqrt{1728}}{64}\\x_2=\frac{72-\sqrt{1728}}{64}\end{matrix}\right.\)

c) Δ\(=\left(-7\right)^2+4.3=\sqrt{61}\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{7+\sqrt{61}}{6}\\x_2=\frac{7-\sqrt{61}}{6}\end{matrix}\right.\)

Câu hỏi của Nguyễn Kim Oanh - Địa lý lớp 0 | Học trực tuyến

Câu trả lời thứ 800.

21 tháng 5 2021

\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)

\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)

\(< =>12x-20-14x-21=0\)

\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)

21 tháng 5 2021

\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)

\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)

\(< =>8x+12+4x-2x+3=0\)

\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!