K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^4-10x^3+35x^2+24>0\)

\(\Leftrightarrow x^4-2.5.x^3+\left(5x\right)^2+10x^2+24>0\)

\(\Leftrightarrow\left(x^2-5x\right)^2+10x^2+24>0\)

\(\Leftrightarrow x^2\left(x-5\right)^2+10x^2+24>0\)(luôn đúng)

Vậy nghiệm của bất phương trình \(x\in R\)

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B

26 tháng 7 2018

1,\(x^4-x=0\\ ->x\left(x-1\right)\left(x^2+x+1\right)=0\\ ->\left(......\right)\)

2\(x^4-x^2=0\\ ->x^2\left(x^2-1\right)\\ ->x^2\left(x-1\right)\left(x+1\right)\\ ->......\)

3,\(x^5+x^2\\ ->x^2\left(x^3+1\right)\\ ->x^2\left(x+1\right)\left(x^2-x+1\right)\\ ->.......\)

4\(3x\left(x-20\right)-x+20=0->\left(3x-1\right)\left(x-20\right)=0->.....\)

1: \(\Leftrightarrow3x+4x=4\)

=>7x=4

hay x=4/7

2: \(\Leftrightarrow3x-5x-5^3:5^2=0\)

=>-2x=5

=>x=-5/2

8 tháng 8 2018

1) \(-6x^2-x+7=0\)

\(\Leftrightarrow-6x^2+6x-7x+7=0\)

\(\Leftrightarrow\left(-6x^2+6x\right)-\left(7x-7\right)=0\)

\(\Leftrightarrow-6x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(-6x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-6x-7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{6}\\x=1\end{matrix}\right.\)

2) \(-4x^2-5x+9=0\)

\(\Leftrightarrow-4x^2+4x-9x+9=0\)

\(\Leftrightarrow\left(-4x^2+4x\right)-\left(9x-9\right)=0\)

\(\Leftrightarrow-4x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(-4x-9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-4x-9=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{4}\\x=1\end{matrix}\right.\)

3) \(x^2+3x-4=0\)

\(\Leftrightarrow x^2-x+4x-4=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(4x-4\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

4) \(x^2-6x-7=0\)

\(\Leftrightarrow x^2+x-7x-7=0\)

\(\Leftrightarrow\left(x^2+x\right)-\left(7x+7\right)=0\)

\(\Leftrightarrow x\left(x+1\right)-7\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)

5) \(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow\left(x^2+x\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

a) \(-6x^2-x+7=0\)

\(\Leftrightarrow-6x^2+6x-7x+7=0\)

\(\Leftrightarrow-6x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-6x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{6}\end{matrix}\right.\)

b) \(-4x^2-5x+9=0\)

\(\Leftrightarrow-4x^2+4x-9x+9=0\)

\(\Leftrightarrow-4x\left(x-1\right)-9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-4x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2,25\end{matrix}\right.\)

c) \(x^2+3x-4=0\)

\(\Leftrightarrow x^2-x+4x-4=0\)

\(\Leftrightarrow x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

d) \(x^2-6x-7=0\)

\(\Leftrightarrow x^2+x-7x-7=0\)

\(\Leftrightarrow x\left(x+1\right)-7\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=7\end{matrix}\right.\)

e) \(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

24 tháng 6 2021

(3x + 5)2 - (2x + 1)2 = 0

<=> (3x + 5 + 2x + 1)(3x + 5 - 2x - 1) = 0

<=> (5x + 6)(x + 4) = 0

<=> \(\orbr{\begin{cases}x=-\frac{6}{5}\\x=-4\end{cases}}\)

Vậy \(x\in\left\{-\frac{6}{5};-4\right\}\)là nghiệm phương trình

24 tháng 6 2021

\(\left(3x+5\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(3x+5+2x+1\right)\left(3x+5-2x-1\right)=0\)

\(\Leftrightarrow\left(5x+6\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=-\frac{6}{5}\)

Vậy tập nghiệm của phương trình là S = { -4 ; -6/5 } 

30 tháng 8 2021

đâu cơ tôi chẳng hiểu?

30 tháng 8 2021

giúp cho người ta học vẹt à?

17 tháng 5 2021

`x^2+2x+3>2`

`<=>x^2+2x+1>0`

`<=>(x+1)^2>0`

`<=>x+1 ne 0`

`<=>x ne -1`

`(x+5)(3x^2+2)>0`

Vì `3x^2+2>=2>0`

`=>x+5>0<=>x>-5`

c) Ta có: \(21x-10x^2+9< 0\)

\(\Leftrightarrow10x^2-21x-9>0\)

\(\Leftrightarrow x^2-\dfrac{21}{10}x-\dfrac{9}{10}>0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{21}{20}+\dfrac{441}{400}>\dfrac{801}{400}\)

\(\Leftrightarrow\left(x-\dfrac{21}{20}\right)^2>\dfrac{801}{400}\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3\sqrt{89}+21}{20}\\x< \dfrac{-3\sqrt{89}+21}{20}\end{matrix}\right.\)

 

2 tháng 8 2018

A=26x2+y(2x+y)-10x(x+y)

A=26x2+2xy+y2-10x2-10xy

A=16x2-8xy+y2 =(4x)2-2.4x.y+y2 =(4x-y)2

Thay x=0,25y,ta có: A=(4.0,25y - y)2=(y-y)2=0

B=x3+6x2y+12xy2+8y3

B=x3+3x22y+3x(2y)2+(2y)3 =(x+2y)3

Có x+2y=-5 ⇒ x=-5-2y

Thay x=-5-2y vào, ta có B=(-5-2y+2y)3=(-5)3=-125

27 tháng 5 2020

xét :

|2x - 1| = 2x - 1 nếu 2x - 1 >0 hay x > \(\frac{1}{2}\)

=> 4(2x - 1) - x = 2 <=> 8x - 4 -x = 2 <=> 7x = 6 => x = \(\frac{6}{7}\)

( thỏa mãn ĐK )

|2x -1| = 1 - 2x nếu 2x - 1 < 0 hay x < \(\frac{1}{2}\)

=> 4.( 1 - 2x) - x = 2 <=> 4 - 8x -x = 2<=> 2 =9x => x = \(\frac{2}{9}\) (thỏa mãn ĐK)

vậy phương trình có nghiệm s = { \(\frac{1}{2},\frac{2}{9}\) }

23 tháng 12 2021

g: \(=\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

h: \(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

23 tháng 12 2021

\(e,=\dfrac{1}{x-1}-\dfrac{2x}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x^2-2x+1}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{\left(x^2+1\right)\left(x-1\right)}=\dfrac{x-1}{x^2+1}\\ f,=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\\ =\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

\(g,=\dfrac{x}{x\left(x-2\right)}-\dfrac{x^2+4x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\\ =\dfrac{x^2+2x-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\\ h,=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)