\(x^2-6x+9< 0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

x2 - 6x + 9 = x2 - 2.3.x + 32 = ( x - 3)2 

Ta có: ( x - 3)2 < 0 

Mà bình phương của một số chỉ có thể lớn hơn hoặc bằng 0. Ví dụ: 02 = 0, 12 = 1, 22 = 4, ( -1)2 = 1,  (-3)2 = 9

=> (x- 3 )2 < 0 là vô lí

=> không tồn tại x

27 tháng 4 2022

làm đúng mà cách lập luận ko hay

24 tháng 4 2019

a) \(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)

TH1 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{9}\\x< \frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\frac{-1}{9}< x< \frac{5}{2}\)( thỏa )

TH2 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\frac{5}{2}< x< -\frac{1}{9}\)( loại )

Vậy....

24 tháng 4 2019

b) \(x^2-6x+9< 0\)

\(\Leftrightarrow\left(x-3\right)^2< 0\)( vô lý )

Vậy bpt vô nghiệm

11 tháng 8 2017

câu 1 theo cách nhẩm nghiệm thì mình thấy hình như bn chép sai đề r

x2-1/x-1>0=>(x-1)(x+1)/x-1>0 rút gọn vế trái còn x+1>0=.x>-1

x2-6x+9>0=>x-3(x-3)>0=>xảy ra khi 2 thừa số này cùng dấu =>x>3 hoặc x<3

15 tháng 8 2019

\(\left|x^2-9\right|=\left|-7\right|\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-9=7\\x^2-9=-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=16\\x^2=2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\pm4\\x=\pm\sqrt{2}\end{cases}}\)

19 tháng 8 2020

x2 + 6x - 16 > 2x - 7

<=> x2 + 6x - 2x > -7 + 16

<=> x2 + 4x > 9

<=> x2 + 4x + 4 > 9 + 4

<=> ( x + 2 )2 > 13

<=> ( x + 2 )2 > \(\left(\pm\sqrt{13}\right)^2\)

<=> \(\orbr{\begin{cases}x+2>\sqrt{13}\\x+2>-\sqrt{13}\end{cases}\Rightarrow}\orbr{\begin{cases}x>\sqrt{13}-2\\x>-2-\sqrt{13}\end{cases}}\)

3 tháng 4 2018

a) \(|2x+1|=|x-3|\)

\(\Leftrightarrow|2x+1|-|x-3|=0\)

Lập bảng xét dấu :

x \(\frac{-1}{2}\) 3 
2x+1-0+\(|\)+
x-3-\(|\)-0+

Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)

                                    \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow-2x-1-3+x=0\)

\(\Leftrightarrow-x=4\)

\(\Leftrightarrow x=-4\left(tm\right)\)

Nếu  \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)

                                               \(|x-3|=3-x\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x+1-3+x=0\)

\(\Leftrightarrow3x-2=0\)

\(x=\frac{2}{3}\left(tm\right)\)

Nếu  \(x>3\) thì \(|2x+1|=2x+1\) 

                               \(|x-3|=x-3\)

\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)

\(\Leftrightarrow2x+1-x+3=0\)

\(\Leftrightarrow x=-4\) ( loại )

3 tháng 4 2018

\(x^4+x^2+6x-8=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)

Mà \(\left(x^2+1\right)^2\ge0\forall x\)

      \(\left(x-3\right)^2\ge0\forall x\)

Dấu bằng xảy ra khi :

\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)

Lại có \(x^2\ge0\forall x\)

\(\Leftrightarrow x^2=-1\) ( vô lí )

Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)

24 tháng 4 2017

C nhé

Vì;Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a# 0, được gọi là bất phương trình bậc nhất một ẩn.

 NHỚ K NHA

24 tháng 4 2017

Bất phương trình dạng ax + b < 0 (hoặc ax + b > 0, ax + b < 0, ax + b ≤ 0, ax + b ≥ 0) trong đó a và b là hai số đã cho, a# 0, được gọi là bất phương trình bậc nhất một ẩn.

chọn C

24 tháng 4 2017

A . 3x + 2(x + 1) = 6x - 7

<=> 3x + 2x + 2 = 6x -7

<=> 5x - 6x = -7 - 2

<=> -x = -9

<=> x =9

B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)

=> 3(x +3) < 5(5 -x)

<=> 3x+9 < 25 - 5x

<=> 3x + 5x < 25 - 9

<=> 8x < 16

<=> x < 2

C . \(\frac{5}{x+1}\)\(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{x^2+x-4x-4_{ }}\)\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)\(\frac{2}{x-4}\)

<=> 5(x - 4) + 2x = 2(x +1)

<=> 5x - 20 + 2x = 2x + 2

<=>7x - 2x = 2 + 20

<=> 5x = 22

<=> x =\(\frac{22}{5}\)

9 tháng 7 2017

a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)

\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)

\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)

\(\Leftrightarrow108-24x+12=324-27x+27\)

\(\Leftrightarrow3x=231\)

\(\Rightarrow x=77\)

c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)

\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)

\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)

\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)

\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)

28 tháng 5 2018

a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9

b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5

c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)

Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12