Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
1, \(3x+4< 0\Rightarrow3x< -4\)\(\Rightarrow x< -\frac{4}{3}\)
2, \(2x-3>0\Rightarrow2x>3\)\(\Rightarrow x>\frac{3}{2}\)
3, \(1,2x< -6\Rightarrow x< \frac{-6}{1,2}\Rightarrow x< \)\(-5\)
4, \(3x+4>2x+3\)\(\Rightarrow3x-2x>3-4\)\(\Rightarrow x>-1\)
Đây là dạng cơ bản nhất của dạng giải bất phương trình nên nắm vững nhé
Chuyển vế, đổi dấu như thường, chỉ có nhân(chia) cho số âm thì đổi chiều thôi
chúc bạn học tốt nhé
ta có:
2x+(2x+1)/2=2x+2x/2+1/2=2x+x+1/2=3x+1/2;
ta có:
2x+(2x+1)/2>3x-1/5
<=>3x+1/2=3x-1/5
<=>1/2>-1/5(luôn đúng)
vậy BPT có vô số nghiệm
\(4x^2-4x-5\left|2x-1\right|-5=0\)
\(\Leftrightarrow-5\left|2x-1\right|=5-4x^2+4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{-4x^2+4x+5}{-5}\)
\(\Leftrightarrow\left|2x-1\right|=\frac{4x\left(x-1\right)}{5}-1\)
TH1 : \(2x-1=\frac{4x\left(x-1\right)}{5}-1\Leftrightarrow2x=\frac{4x\left(x-1\right)}{5}\)
\(\Leftrightarrow10x=4x^2-4x\Leftrightarrow14x-4x^2=0\)
\(\Leftrightarrow-2x\left(2x-7\right)=0\Leftrightarrow x=0;x=\frac{7}{2}\)
TH2 : \(2x-1=-\left(\frac{4x\left(x-1\right)}{5}-1\right)\Leftrightarrow2x-1=-\frac{4x\left(x-2\right)}{5}+1\)
\(\Leftrightarrow2x-2=-\frac{4x\left(x-2\right)}{5}\Leftrightarrow10x-10=-4x^2+8x\)
\(\Leftrightarrow2x-10+4x^2=0\Leftrightarrow2\left(2x^2+x-5\ne0\right)=0\)tự chứng minh
Vậy tập nghiệm của phương trình là S = { 0 ; 7/2 }
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
(2x+6)(3x-1/2)=0
=>2x+6=0 =>2x=-6 =>x=-3
hoặc 3x-1/2=0 =>3x=1/2 =>x=1/6
vậy x=-3;1/6
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
\(x^3-2x^2+3x-6< 0\)
\(\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3\right)< 0\)
\(\Leftrightarrow x-2< 0\) (Vì \(x^2+3>0\) \(\forall x\))
\(\Leftrightarrow x< 2\)
V...
3x.( 2x - 1 ) + 6.( 1 - 2x ) = 0
\(\Leftrightarrow\) 3x.( 2x - 1 ) - 6.( 2x - 1 ) = 0
\(\Leftrightarrow\) ( 2x - 1 ) .( 3x - 6 ) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=0\\3x-6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}2x=1\\3x=6\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=2\end{cases}}\)
Vậy bất phương trình có nghiệm là : x = \(\frac{1}{2}\) , x = 2
\(3x\left(2x-1\right)+6\left(1-2x\right)=0\)
\(\Leftrightarrow3x\left(2x-1\right)-6\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-6\right)=0\)
Hoặc \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Hoặc \(3x-6=0\Leftrightarrow x=2\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{1}{2};2\right\}\)