Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
\(\frac{3x-5}{4x+1}-\frac{x-2}{3x-5}=0\)
\(\Rightarrow\frac{3x-5}{4x+1}=\frac{x-2}{3x-5}\)
\(\Rightarrow\left(3x-5\right)^2=\left(4x+1\right)\left(x-2\right)\)
\(\Rightarrow9x^2-30x+25=4x^2+7x-2\)
\(\Rightarrow5x^2-37x+27=0\)
Sai đề ???
a: 3x+2>8
nên 3x>6
hay x>2
b: 4x-5<7
nên 4x<12
hay x<3
c: -2x+1<7
nên -2x<6
hay x>-3
d: -3x+13>-2
=>-3x>-15
hay x<5
\(1-2\left(x+1\right)\ge5\left(x-2\right)+2\)
\(\Leftrightarrow1-2x-2\ge5x-10+2\)
\(\Leftrightarrow-2x-5x\ge-10+2-1+2\)
\(\Leftrightarrow-7x\ge-7\)
\(\Leftrightarrow x\le1\)
\(\frac{3x+3}{3x-2}< 1\)
\(\Leftrightarrow\frac{3x-2+5}{3x-2}< 1\)
\(\Leftrightarrow1+\frac{5}{3x-2}< 1\)
\(\Leftrightarrow\frac{5}{3x-2}< 0\)
\(\Leftrightarrow3x-2< 0\)
\(\Leftrightarrow3x< 2\)
\(\Leftrightarrow x< \frac{2}{3}\)
a) \(|2x+1|=|x-3|\)
\(\Leftrightarrow|2x+1|-|x-3|=0\)
Lập bảng xét dấu :
x | \(\frac{-1}{2}\) | 3 | |||
2x+1 | - | 0 | + | \(|\) | + |
x-3 | - | \(|\) | - | 0 | + |
Nếu \(x< \frac{-1}{2}\) thì \(|2x+1|=-2x-1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(-2x-1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow-2x-1-3+x=0\)
\(\Leftrightarrow-x=4\)
\(\Leftrightarrow x=-4\left(tm\right)\)
Nếu \(\frac{-1}{2}\le x\le3\) thì \(|2x+1|=2x+1\)
\(|x-3|=3-x\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x+1-3+x=0\)
\(\Leftrightarrow3x-2=0\)
\(x=\frac{2}{3}\left(tm\right)\)
Nếu \(x>3\) thì \(|2x+1|=2x+1\)
\(|x-3|=x-3\)
\(pt\Leftrightarrow\left(2x+1\right)-\left(x-3\right)=0\)
\(\Leftrightarrow2x+1-x+3=0\)
\(\Leftrightarrow x=-4\) ( loại )
\(x^4+x^2+6x-8=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)-\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-3\right)^2=0\)
Mà \(\left(x^2+1\right)^2\ge0\forall x\)
\(\left(x-3\right)^2\ge0\forall x\)
Dấu bằng xảy ra khi :
\(\hept{\begin{cases}x^2+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=-1\\x=3\end{cases}}\)
Lại có \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2=-1\) ( vô lí )
Vậy phương trình có tập nghiệm \(S=\left\{3\right\}\)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)
=> \(6x-4\ge5x+8\)
=> \(x-12\ge0\)
=> \(x\ge12\)
bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)
=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)
=> \(44-8x>18-6x\)
=> \(x< 13\)
Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)
( x + 2 ) ( x2 - 3x + 5 ) = ( x + 2 )
<=> x2 - 3x + 5 = 1
<=> x2 - 3x + 4 = 0
<=> x2 - 3x + 9/4 + 7/4 = 0
<=> ( x - 3/2 )2 = - 7/4 ( mâu thuẫn )
=> Pt vô nghiệm
\(\frac{x}{x-3}>1\)<=> \(\frac{x}{x-3}-1>0\)
<=>\(\frac{x-\left(x-3\right)}{x-3}>0\)<=>\(\frac{3}{x-3}>0\)
<=> x - 3 > 0 <=> x > 3
a)
\(x=-2,\frac{3+i\sqrt{7}}{2},\frac{3-i\sqrt{7}}{2}\)
b) \(x>3\)
Ký hiệu khoảng:
\(\left(3,\infty\right)\)
=>3x-2=3x+2 hoặc -3x+2=3x+2
=>-2=2(loại) hoặc -6x=0
=>x=0