
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: \(1^2+2^2+3^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\left(1\right)\)
Ta đi chứng minh:
*)Với \(n=1\) thì \(\left(1\right)\) đúng
Giả sử \(\left(1\right)\) đúng với \(n=k\), khi đó \(\left(1\right)\) thành
\(1^2+2^2+3^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\)
Thật vậy giả sử \(\left(1\right)\) đúng với \(n=k+1\) khi đó \(\left(1\right)\) thành
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\left(2\right)\)
Cần chứng minh \(\left(2\right)\) đúng:
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(\Rightarrow1^2+2^2+...+k^2+\left(k+1\right)^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\dfrac{6\left(k+1\right)^2}{6}\)
\(=\dfrac{\left(k+1\right)\left[k\left(2k+1\right)+6\left(k+1\right)\right]}{6}=\dfrac{\left(k+1\right)\left[2k^2+k+6k+6\right]}{6}\)
\(=\dfrac{\left(k+1\right)\left[\left(2k^2+3k\right)+\left(4k+6\right)\right]}{6}=\dfrac{\left(k+1\right)\left[k\left(2k+3\right)+2\left(2k+3\right)\right]}{6}\)
\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\). Suy ra \(\left(2\right)\). Theo nguyên lí quy nạp ta có ĐPCM

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)
\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)
\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)

\(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
\(\Rightarrow2x^2+3\left(x^2-1\right)=5x^2+5x\)
\(\Rightarrow2x^2+3x^2-3=5x^2+5x\)
\(\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow-3=5x\)
\(\Rightarrow5x=-3\)
\(\Rightarrow x=-\dfrac{3}{5}\)
Vậy ....
P/s : Làm bừa !


\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)

x11+x4+1
= x11+x10+x9-x10-x9-x8+x8+x7+x6-x7-x6-x5+x5+x4+x3-x3-x2-x+x2+x+1
= x9(x2+x+1)-x8(x2+x+1)+x6(x2+x+1)-x5(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x9-x8+x6-x5+x3-x+1)
|x-3| >x-6
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-3\ge0\\x-3>x-6\end{matrix}\right.\\\left\{{}\begin{matrix}x-3< 0\\-x+3>x-6\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge3\\-3>6\end{matrix}\right.\\\left\{{}\begin{matrix}x< 3\\2x< 9\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge3\\x< 3\end{matrix}\right.\)\(\Rightarrow dung\forall x\)