K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

    (x2-3x+2)(x2-9x+20)=4

=>(x-1)(x-2)(x-4)(x-5)=4

Đặt x-3=a , phương trình tương đương:

    (a+2)(a+1)(a-1)(a-2)=4

=>(a2-1)(a2-4)=4

=>a4-5a2=0

Tự giải nốt nhé!

9 tháng 1 2017

9 tháng 1 2017

DD
6 tháng 8 2021

\(7x^3+11=3\left(x+y\right)\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y\right)^3+7x^3+11+1=\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3+7x^3+3xy\left(3x+y\right)=\left(x+y\right)^3+3\left(x+y\right)^2+3\left(x+y\right)+1\)

\(\Leftrightarrow8x^3+12x^2y+6xy^2+y^3=\left(x+y+1\right)^3\)

\(\Leftrightarrow\left(2x+y\right)^3=\left(x+y+1\right)^3\)

\(\Leftrightarrow2x+y=x+y+1\)

\(\Leftrightarrow x=1\)

Với \(x=1\):

\(y\left(3+y\right)=4\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-4\end{cases}}\).

6 tháng 8 2021

y = 1

y = -4

26 tháng 7 2016

a) Ta có: \(\Delta\) = (-2m)2 - 4.1.(m-2) = 4m2 - 4m + 8 = (4m2 - 4m + 1) + 7 = (2m-1)2 + 7 \(\ge\) 7 > 0 x do đo (1) luôn có 2 nghiệm với mọi m.

25 tháng 7 2018

ta có : \(\Delta'=\left(m-1\right)^2-\left(3m-3\right)=m^2-2m+1-3m+3\)

\(\Leftrightarrow\Delta'=m^2-5m+4\)

để phương trình có 2 nghiệm\(\Leftrightarrow\Delta'\ge0\Leftrightarrow m^2-5m+4\Leftrightarrow\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\)

áp dụng định lí vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=3m-3\end{matrix}\right.\)

ta có : \(x_1^2+x_2^2\ge10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2\left(m-1\right)\right)^2-2\left(3m-3\right)\ge10\)

\(\Leftrightarrow4m^2-8m+4-6m+6\ge10\)

\(\Leftrightarrow4m^2-14m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{7}{2}\\m\le0\end{matrix}\right.\) kết hợp với \(\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m\ge4\\m\le0\end{matrix}\right.\) vậy \(m\ge4\) hoặc \(m\le0\)

NV
6 tháng 9 2020

a/ Bạn tự giải

b/ Pt có 2 nghiệm pb \(\Leftrightarrow\Delta'=4-m>0\Rightarrow m< 4\)

Khi đó theo đl Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m\end{matrix}\right.\)

\(x_1^2+x_2^2-5x_1x_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x_2=9\)

\(\Leftrightarrow16-7m=9\)

\(\Leftrightarrow m=1\)