Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Lời giải
a) \(\sqrt{\left(x-4\right)^2\left(x+1\right)}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ne4\\x>-1\end{matrix}\right.\)
b) \(\sqrt{\left(x+2\right)^2\left(x-3\right)}>0\Rightarrow\left\{{}\begin{matrix}x\ne-2\\x-3>0\end{matrix}\right.\) \(\Rightarrow x>3\)
\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}y>2\\x< -1\end{cases}}\)
a)
x^2 +1 >0 mọi x
BPT \(\Leftrightarrow x^2+3x-10< 0\) {\(\Delta=9+40=49\)}
\(\Rightarrow-5< x< 2\)
b)
5+x^2 > 0 với mọi x BPT \(\Leftrightarrow20-2x-x^2-5>0\Leftrightarrow x^2+2x-15< 0\){\(\Delta'=1+15=16\)}
\(\Rightarrow-5< x< 3\)
(x-1)(2-x2)>0
=>\(\left(x-1\right)\left(x^2-2\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x-1>0\\x^2-2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>1\\-\sqrt{2}< x< \sqrt{2}\end{matrix}\right.\)
=>\(1< x< \sqrt{2}\)
TH2: \(\left\{{}\begin{matrix}x-1< 0\\x^2-2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 1\\x^2>2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 1\\\left[{}\begin{matrix}x>\sqrt{2}\\x< -\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)
=>\(x< -\sqrt{2}\)
A = (\(x-1\)).(2 \(-x^2\)) > 0
\(x-1=0\) ⇒ \(x=1\); 2 - \(x^2\) = 0 ⇒ \(x\) = \(\pm\) \(\sqrt{2}\)
Lập bảng xét dấu ta có:
Vậy tập hợp nghiệm của bất phương trình trên là:
\(x\) \(\in\) \((\)\(-\infty\); \(-\) \(\sqrt{2}\) \()\) \(\cup\) ( 1; \(\sqrt{2}\))