\(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2022

ĐKXĐ : \(1\le x\le3\)

Ta có \(\sqrt{x-1}+\sqrt{3-x}+4x\sqrt{2x}\ge x^3+10\)

<=> \(-2\sqrt{x-1}-2\sqrt{3-x}-8x\sqrt{2x}\le-2x^3-20\)

<=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+2x^3-8x\sqrt{2x}+16\le0\)(1)

Đặt \(\sqrt{2x}=y\) => \(x=\dfrac{y^2}{2}\)

Khi đó \(2x^3-8x\sqrt{2x}+16=\dfrac{y^6}{4}-4y^3+16=\left(\dfrac{y^3-8}{2}\right)^2\)

Khi đó (1) <=> \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\le0\)(1)

mà \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2\ge0\forall x;y\)(2) 

Từ (2)(1) => \(\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{3-x}-1\right)^2+\left(\dfrac{y^3-8}{2}\right)^2=0\)

<=> \(\left\{{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{3-x}-1=0\\\dfrac{y^3-8}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\3-x=1\\y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=2\\\sqrt{2x}=2\end{matrix}\right.\Leftrightarrow x=2\)

Vậy x = 2 là nghiệm bất phương trình

26 tháng 7 2018

a) \(\sqrt{2x-1}< 3\)

\(\Leftrightarrow2x-1< 9\)

\(\Leftrightarrow2x< 10\)

\(\Leftrightarrow x< 5\)

\(\sqrt{2x-1}\)có nghĩa khi \(2x-1< 0\)

                                              \(\Leftrightarrow2x< 1\)

                                                \(\Leftrightarrow1x\le\frac{1}{2}\)

                   Từ đó x<1/2 

                 \(\Rightarrow\sqrt{2x-1}< 3\)

B tương tự 

5 tháng 10 2020

a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)

ĐK : x ≥ 0

<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)

<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)

<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)

<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)

<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)

<=> \(\sqrt{x}\times\frac{2}{3}=5\)

<=> \(\sqrt{x}=\frac{15}{2}\)

<=> \(x=\frac{225}{4}\)( tm )