\(\sqrt[3]{x+24}\sqrt{12-x^2}\le6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2019

1.ĐK: \(x\ge\dfrac{1}{4}\)

bpt\(\Leftrightarrow5x+1+4x-1-2\sqrt{20x^2-x-1}< 9x\)

\(\Leftrightarrow2\sqrt{20x^2-x-1}>0\)

\(\Leftrightarrow20x^2-x-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{-1}{5}\\x>\dfrac{1}{4}\end{matrix}\right.\)

2.ĐK: \(-2\le x\le\dfrac{5}{2}\)

bpt\(\Leftrightarrow x+2+3-x-2\sqrt{-x^2+x+6}< 5-2x\)

\(\Leftrightarrow2x< 2\sqrt{-x^2+x+6}\)

\(\Leftrightarrow x^2< -x^2+x+6\)

\(\Leftrightarrow-2x^2+x+6>0\)

\(\Leftrightarrow\dfrac{-3}{2}< x< 2\)

3. ĐK: \(\left\{{}\begin{matrix}12+x-x^2\ge0\\x\ne11\\x\ne\dfrac{9}{2}\end{matrix}\right.\)

.bpt\(\Leftrightarrow\sqrt{12+x-x^2}\left(\dfrac{1}{x-11}-\dfrac{1}{2x-9}\right)\ge0\)

\(\Leftrightarrow\sqrt{-x^2+x+12}.\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Rightarrow\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Leftrightarrow\dfrac{x+2}{2x^2-31x+99}\ge0\)

*Xét TH1: \(\left\{{}\begin{matrix}x+2\ge0\\2x^2-31x+99>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x< \dfrac{9}{2}\\x>11\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2\le x< \dfrac{9}{2}\\x>11\end{matrix}\right.\)

*Xét TH2: \(\left\{{}\begin{matrix}x+2\le0\\2x^2-31x+99< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\\dfrac{9}{2}< x< 11\end{matrix}\right.\)\(\Rightarrow\dfrac{9}{2}< x< 11\)

24 tháng 6 2020

\(\sqrt{8+2x-x^2}\le6-3x\)

\(\left\{{}\begin{matrix}-x^2+2x+8\ge0\\6-3x\ge0\\-x^2+2x+8\le\left(6-3x\right)^2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2\le x\le4\\x\le2\\-x^2+2x+8\le36-36x+9x^2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2\le x\le4\\x\le2\\-10x^2+38x-28\le0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2< x< 4\\x\le2\\\left[{}\begin{matrix}x\le1\\x\ge\frac{14}{5}\end{matrix}\right.\end{matrix}\right.\)

\(-2\le x\le1\)

Vậy \(S=\left[-2;1\right]\)

13 tháng 2 2019

Mình bt làm rồi ạ !

5 tháng 4 2016

Điều kiện xác định : \(x\ge1+\sqrt{3}\)

Với điều kiện đó, bất phương trình trở thành : \(x^2+2x-2+2\sqrt{x\left(x+1\right)\left(x-2\right)}\ge3\left(x^2-2x-2\right)\left(2\right)\)

\(\Leftrightarrow\sqrt{x\left(x-2\right)\left(x+1\right)}\ge x\left(x-2\right)-2\left(x+1\right)\)

\(\Leftrightarrow\left(\sqrt{x\left(x-2\right)}-2\sqrt{x+1}\right)\left(\sqrt{x\left(x-2\right)}+\sqrt{x+1}\right)\le0\) (3)

Do với mọi x thỏa mãn (1) , ta có \(\sqrt{x\left(x-2\right)}+\sqrt{x+1}>0\) nên

(3) \(\Leftrightarrow\sqrt{x\left(x-2\right)}\le2\sqrt{x+1}\)

     \(\Leftrightarrow x^2-6x-4\le0\)

     \(\Leftrightarrow3-\sqrt{13}\le x\le3+\sqrt{13}\) (4)

Kết hợp (1) và (4) ta được tập nghiệm của bất phương trình đã cho là :

\(\left[1+\sqrt{3};3+\sqrt{13}\right]\)

6 tháng 5 2016

Bất phương trình : \(\Leftrightarrow2^{\frac{x+1}{2}}.2^{\frac{4x-2}{3}}.2^{9-3x}>2^{\frac{3}{2}}.2^{-3}\)

                            \(\Leftrightarrow2^{\frac{x+1}{2}+\frac{4x-2}{3}+9-3x}>2^{\frac{3}{2}-3}\)

                            \(\Leftrightarrow x< \frac{62}{7}\)

Vậy bất phương trình có tập nghiệm là \(S=\left(-\infty;\frac{62}{7}\right)\)