Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)
\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)
\(\Leftrightarrow4x+4x>-1\)
\(\Leftrightarrow8x>-1\)
\(\Leftrightarrow x>-\frac{1}{8}\)
\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)
\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)
\(\Leftrightarrow4x^2-6x^2< 1+3\)
\(\Leftrightarrow-2x^2< 4\)
\(\Leftrightarrow x^2>2\)
\(\Leftrightarrow x>\pm\sqrt{2}\)
Cho x,y,z là các sô dương.Chứng minh rằng x/2x+y+z+y/2y+z+x+z/2z+x+y<=3/4
nhiều thế
a) \(\frac{5x-2}{2}\ge\frac{3-x}{3}\Leftrightarrow\frac{3\left(5x-2\right)}{6}\ge\frac{2\left(3-x\right)}{6}\Leftrightarrow15x-6\ge6-2x\Leftrightarrow x\ge\frac{12}{17}\)
0 [ 12/17
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
a)\(\frac{x+3}{6}\)+\(\frac{x-2}{10}\)>\(\frac{x+1}{5}\)
<=> \(\frac{5\left(x+3\right)}{30}\)+\(\frac{3\left(x-2\right)}{30}\)>\(\frac{6\left(x+1\right)}{30}\)
<=>5(x+3)+3(x-2)>6(x+1)
<=>5x+15+3x-6>6x+6
<=>8x-6x >6-15+6
<=>2x >-3
<=>x >-1,5
Vậy tập nghiệm của bất phương trình là {x/x>-1,5}
a) Ta có: \(\frac{3x-5}{2}\ge5x\)
\(\Leftrightarrow3x-5\ge10x\)
\(\Leftrightarrow3x-10x\ge5\)
\(\Leftrightarrow-7x\ge5\)
\(\Leftrightarrow x\le-\frac{5}{7}\)
Vậy tập nghiệm của bất phương trình là: \(\left\{x|x\le-\frac{5}{7}\right\}\)
b) Ta có: \(x.\left(2+x\right)-x^2+8x< 5x+20\)
\(\Leftrightarrow2x+x^2-x^2+8x-5x< 20\)
\(\Leftrightarrow5x< 20\)
\(\Leftrightarrow x< 4\)
Vậy tập nghiệm của bất phương trình là: \(\left\{x|x< 4\right\}\)
a) (3x - 5)/2 >= 5x
<=> 3x - 5 >= 10x
<=> -5 >= 10x - 3x
<=> -5 >= 7x
<=> x =< -5/7
b) x(2 + x) - x^2 + 8x < 5x + 20
<=> 2x + x^2 - x^2 + 8x < 5x + 20
<=> 10x < 5x + 20
<=> 10x - 5x < 20
<=> 5x < 20
<=> x < 4