Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 6x^2 -x-2>=0
\(\Delta=1+24=25\)
\(\Rightarrow\left[{}\begin{matrix}x\le\dfrac{1-5}{2.6}=\dfrac{-1}{3}\\x\ge\dfrac{1+5}{2.6}=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\dfrac{1}{3}x^2+3x+6< 0\Leftrightarrow x^2+9x+18< 0\left\{\Delta=81-4.18=9\right\}\)
\(x_1=\dfrac{-9-3}{2}=-6;x_2=\dfrac{-9+3}{2}=-3\)
\(N_0BPT:\) \(-6< x< -3\)
a) \(4x^2-x+1< 0\)
Tam thức f(x) = 4x2 - x + 1 có hệ số a = 4 > 0 biệt thức ∆ = 12 – 4.4 < 0. Do đó f(x) > 0 ∀x ∈ R.
Bất phương trình 4x2 - x + 1 < 0 vô nghiệm.
b) f(x) = - 3x2 + x + 4 = 0
\(\Delta=1^2-4\left(-3\right).4=49\)
\(x_1=\dfrac{-1+\sqrt{49}}{-3}=-1\)
\(x_2=\dfrac{-1-\sqrt{49}}{-3.2}=\dfrac{4}{3}\)
- 3x2 + x + 4 ≥ 0 <=> - 1 ≤ x ≤ .
a) \(x^2-2x+3>0\)
\(\left(x-1\right)^2+2>0\) =>N0 đúng với mọi x
b)
\(x^2-6x+9>0\Leftrightarrow\left(x-3\right)^2>0\Rightarrow N_0\forall x\ne3\)
\(x^2-\left|3x+2\right|+x-1>0\) (1)
\(\Leftrightarrow\begin{cases}\begin{cases}3x+2\ge0\\x^2-\left(3x+2\right)+x-1=x^2-2x-3>0\end{cases}\\\begin{cases}3x+2<0\\x^2+\left(3x+2\right)+x-1=x^2+4x+1>0\end{cases}\end{cases}\)
\(\Leftrightarrow\begin{cases}-\frac{2}{3}\le x\\x\in\left(-\infty,-1\right)\cup\left(3;+\infty\right)\end{cases}\) hoặc \(\begin{cases}x<-\frac{2}{3}\\x\in\left(-\infty;-2-\sqrt{3}\right)\cup\left(-2+\sqrt{3};+\infty\right)\end{cases}\)
\(\Leftrightarrow x<-2-\sqrt{3}\) hoặc \(x>3\)
Vậy bất phương trình có tập nghiệm T(1) = \(\left(-\infty;-2-\sqrt{3}\right)\cup\left(3;+\infty\right)\)
a)
x^2 +1 >0 mọi x
BPT \(\Leftrightarrow x^2+3x-10< 0\) {\(\Delta=9+40=49\)}
\(\Rightarrow-5< x< 2\)
b)
5+x^2 > 0 với mọi x BPT \(\Leftrightarrow20-2x-x^2-5>0\Leftrightarrow x^2+2x-15< 0\){\(\Delta'=1+15=16\)}
\(\Rightarrow-5< x< 3\)
|x - 6| < x2 - 5x + 9 (1)
Xét 2 trường hợp:
* Với x - 6 \(\ge0\) => x \(\ge6\) , (1) trở thành: x - 6 < x2 - 5x + 9 => x2 - 6x + 15 > 0
Có: pt x2 - 6x + 15 có \(\Delta<0\) => x2 - 6x + 15 > 0 với mọi x thuộc R
=> S1 = [6 ; +\(\infty\))
* Với x - 6 < 0 => x < 6 , (1) trở thành: 6 - x < x2 - 5x + 9 => x2 - 4x + 3 > 0
Lập bảng xét dấu:
x | \(-\infty\) 1 3 \(+\infty\) |
x2 - 4x + 3 | + 0 - 0 + |
=> x2 - 4x + 3 > 0 khi x \(\in\) (-\(\infty\); 1) \(\cup\) (3 ; +\(\infty\))
=> S2 = (- \(\infty\); 1) \(\cup\) (3 ; 6)
Vậy S = S1 \(\cup\) S2 = (- \(\infty\) ; 1) \(\cup\)(3 ; 6]
x2 - x - 6 ≤ 0
Xét tam thức f(x) = x2 - x - 6 có hai nghiệm x = -2 và x = 3, hệ số a = 1 > 0
Do đó f(x) ≤ 0 khi -2 ≤ x ≤ 3.
Vậy tập nghiệm của bất phương trình là: T = [-2; 3]