Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
a, \(\left(x-4\right)\left(x+2\right)\ge0\)
th1 : \(\hept{\begin{cases}x-4\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge4\\x\ge-2\end{cases}\Rightarrow}x\ge4}\)
th2 : \(\hept{\begin{cases}x-4\le0\\x+2\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le4\\\le-2\end{cases}\Rightarrow}x\le-2}\)
vậy x ≥ 4 hoặc x ≤ -2
b, \(x^2-6x+5=\left(x-1\right)\left(x+5\right)< 0\)
th1 : \(\hept{\begin{cases}x-1< 0\\x+5>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-5\end{cases}\Rightarrow}-5< x< 1}\)
th2 : \(\hept{\begin{cases}x-1>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}\left(voli\right)}}\)
vậy -5<x<1
b, \(x^2-6x+5< 0\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)
Vì \(x-5< x-1\)
\(\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}\Leftrightarrow1< x< 5}\)
Vậy bft có tập nghiệm S = { x | 1 < x < 5 }
ĐK : 2x - 1 \(\ge0\)=> \(x\ge\frac{1}{2}\)
Khi đó |2x - 1| = 2x - 1
<=> \(\orbr{\begin{cases}2x-1=2x-1\\2x-1=-2x+1\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x=0\\4x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}\forall x\\x=\frac{1}{2}\end{cases}}\Leftrightarrow\forall x\)
Kết hợp điều kiện => \(x\ge\frac{1}{2}\)là giá trị phải tìm
Vậy \(x\ge\frac{1}{2}\)là nghiệm phương trình
=> Chọn B
a) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
<=> \(\frac{3\left(3-2x\right)}{15}>\frac{5\left(2-x\right)}{15}\)
<=> \(9-6x>10-5x\)
<=> 9 - 10 > -5x + 6x
<=> x < -1
Vậy nghiệm của bất phương trình là x < -1
b) \(\frac{x-1}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
<=> \(\frac{x-1-2\left(x-1\right)}{6}\le\frac{3x}{6}\)
<=> \(x-1-2x+2\le3x\)
<=> \(-x+1\le3x\)
<=> \(1\le2x\)
<=> x \(\ge\frac{1}{2}\)
Vậy nghiệm của bất phương trình là x > = 1/2
c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)
<=> \(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)
<=> 2x + 1 > 2x - 13
<=> 1 > -13 (luôn đúng)
Vậy nghiệm của bất phương trình luôn đúng với mọi x
A/ \(2\left(5x-3\right)=7x-18.\)
\(10x-6=7x-18\)
\(10-7x=6-18\)
\(3x=-12\)
\(x=-\frac{12}{3}=4\)
\(\Rightarrow S=\left\{4\right\}\)
B/ \(3x\left(x-2\right)+2x-4=0\)
\(3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\left(x-2\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\3x+2=0\Rightarrow3x=-2\Rightarrow x=-\frac{2}{3}\end{cases}}\)
\(\Rightarrow S=\left\{2;-\frac{2}{3}\right\}\)
C/ \(\frac{x+2}{3}\frac{x-3}{2}=\frac{x+5}{4}\)
\(\frac{\left(x+2\right)\left(x-3\right)}{3.2}=\frac{x+5}{4}\)
\(\frac{x^2-3x+2x-6}{6}=\frac{x+5}{4}\)
\(\frac{x^2-x-6}{6}=\frac{x+5}{4}\)
\(\frac{2\left(x^2-x-6\right)}{12}=\frac{3\left(x+5\right)}{12}\)
\(\frac{2x^2-2x-12}{12}=\frac{3x+15}{12}\)
\(\Rightarrow2x^2-2x-12=3x+15\)
(chuyển vế r làm tiếp)
Bài 1 :
\(a,2\left(5x-3\right)=7x-18\)
\(\Leftrightarrow10x-6=7x-18\)
\(\Leftrightarrow10x-7x=6-18\)
\(\Leftrightarrow3x=-12\)
\(\Leftrightarrow x=-4\)
PT có nghiệm S = { -4 }
\(b,3x\left(x-2\right)+2x-4=0\)
\(\Leftrightarrow3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=2\end{cases}}\)
KL : ............
\(c,\frac{x+2}{3}-\frac{x-3}{2}=\frac{x+5}{4}\)
\(\Leftrightarrow\frac{4\left(x+2\right)}{12}-\frac{6\left(x-3\right)}{12}=\frac{3\left(x+5\right)}{12}\)
\(\Leftrightarrow4x+8-6x+18=3x+15\)
\(\Leftrightarrow4x-6x-3x=-8-18+15\)
\(\Leftrightarrow x=-9\)
KL : .......
a) -2x > 23 ⇔ x > 23 + 2 ⇔ x > 25.
Vậy nghiệm của bất phương trình là x > 25
Nhận xét: Sai lầm là: khi tìm x phải nhân hai vế với \(-\dfrac{1}{2}\) hoặc chia hai vế cho -2 và đổi chiều bất phương trình
Lời giải đúng: -2x > 23
⇔x < 23 : (-2)
⇔x < -11,5
Vậy nghiệm của bất phương trình: x < -11,5
b) \(-\dfrac{3}{7}x>12\Leftrightarrow\left(-\dfrac{7}{3}\right).\left(-\dfrac{3}{7}\right)>\left(-\dfrac{7}{3}\right).12\Leftrightarrow x>-28\)
Vậy nghiệm của bất phương trình là x > -28.
Nhận xét: Sai làm là nhân hai vế của bất phương trình cho mà không đổi chiều bất phương trình.
Lời giải đúng:
\(-\dfrac{3}{7}x>12\Leftrightarrow\left(-\dfrac{7}{3}\right).\left(-\dfrac{3}{7}x\right)< \left(-\dfrac{7}{3}\right).12\)
⇔ x < -28
Vậy nghiệm của bất phương trình là x < -28.
không mất tổng quát ta giả sử
\(a>b\)
ta có hai trường hợp 1: \(\hept{\begin{cases}x+a>0\\x+b>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-a\\x>-b\end{cases}\Leftrightarrow}}x>-b\)
trường hợp 2 : \(\hept{\begin{cases}x+a< 0\\x+b< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -a\\x< -b\end{cases}\Leftrightarrow}}x< -a\)
Vậy \(\orbr{\begin{cases}x>-b\\x< -a\end{cases}}\) tổng quát \(\orbr{\begin{cases}x>-min\left(a,b\right)\\x< -max\left(a,b\right)\end{cases}}\)
Ta có : (x + a)(x + b) > 0
TH1 : \(\hept{\begin{cases}x+a>0\\x+b< 0\end{cases}}\Leftrightarrow-a< x< -b\)
TH2 : \(\hept{\begin{cases}x+a< 0\\x+b>0\end{cases}}\Leftrightarrow-b< x< -a\)
Nếu a < b => TH1 loại TH2 đúng
Nếu a > b => TH2 loại TH
Nếu a = b => bất phương trình luôn đúng khi \(x\ne a\)