![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{3x^2-7x+5}{x^2-x-x}-x+\frac{1}{x+1}< 0\Leftrightarrow\frac{x^2-6x+11}{\left(x-2\right)\left(x+1\right)}< 0\Leftrightarrow\frac{\left(x-3\right)^2+2}{\left(x-2\right)\left(x+1\right)}< 0\)
=> (x-2)(x+1)<0 ( vì (x-3)^2+2>0 lđ)
lại có x+1>x-2 => x-2<0 và x+1>0
=> -1<x<2
học tốt
Cho mình làm lại nha:
\(\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}< \frac{2x+2-1}{x+1}.\)
\(\Leftrightarrow\frac{3x^2-7x+5}{\left(x+1\right)\left(x-2\right)}-\frac{2x+1}{x+1}< 0.\)
\(\Leftrightarrow\frac{3x^2-7x+5-\left(2x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{3x^2-7x+5-2x^2+4x-x+2}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{x^2-4x+4+3}{\left(x+1\right)\left(x-2\right)}< 0.\)
\(\Leftrightarrow\frac{\left(x-2\right)^2+3}{\left(x+1\right)\left(x-2\right)}< 0\Leftrightarrow\left(x+1\right)\left(x-2\right)< 0.\)
ta có x+1>x-2 => x+1>0;x-2<0 => -1<x<2
đọc lộn xíu xin lỗi nha
học tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
TL:
\(\Leftrightarrow\)\(\frac{15+3x+12}{15}< \frac{15x-5x-15}{15}\)
\(\Leftrightarrow27+3x< 10x-15\)
\(\Leftrightarrow7x>42\)
\(\Leftrightarrow x>6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
( x + 2 ) ( x2 - 3x + 5 ) = ( x + 2 )
<=> x2 - 3x + 5 = 1
<=> x2 - 3x + 4 = 0
<=> x2 - 3x + 9/4 + 7/4 = 0
<=> ( x - 3/2 )2 = - 7/4 ( mâu thuẫn )
=> Pt vô nghiệm
\(\frac{x}{x-3}>1\)<=> \(\frac{x}{x-3}-1>0\)
<=>\(\frac{x-\left(x-3\right)}{x-3}>0\)<=>\(\frac{3}{x-3}>0\)
<=> x - 3 > 0 <=> x > 3
a)
\(x=-2,\frac{3+i\sqrt{7}}{2},\frac{3-i\sqrt{7}}{2}\)
b) \(x>3\)
Ký hiệu khoảng:
\(\left(3,\infty\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1a : tự kết luận nhé
\(2\left(x+3\right)=5x-4\Leftrightarrow2x+6=5x-4\Leftrightarrow-3x=-10\Leftrightarrow x=\frac{10}{3}\)
Câu 1b : \(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow x+3-2x+6=5-2x\Leftrightarrow-x+9=5-2x\Leftrightarrow x=-4\)
c, \(\frac{x+1}{2}\ge\frac{2x-2}{3}\Leftrightarrow\frac{x+1}{2}-\frac{2x-2}{3}\ge0\)
\(\Leftrightarrow\frac{3x+3-4x+8}{6}\ge0\Rightarrow-x+11\ge0\Leftrightarrow x\le11\)vì 6 >= 0
1) 2(x + 3) = 5x - 4
<=> 2x + 6 = 5x - 4
<=> 3x = 10
<=> x = 10/3
Vậy x = 10/3 là nghiệm phương trình
b) ĐKXĐ : \(x\ne\pm3\)
\(\frac{1}{x-3}-\frac{2}{x+3}=\frac{5-2x}{x^2-9}\)
=> \(\frac{x+3-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{5-2x}{\left(x-3\right)\left(x+3\right)}\)
=> x + 3 - 2(x - 3) = 5 - 2x
<=> -x + 9 = 5 - 2x
<=> x = -4 (tm)
Vậy x = -4 là nghiệm phương trình
c) \(\frac{x+1}{2}\ge\frac{2x-2}{3}\)
<=> \(6.\frac{x+1}{2}\ge6.\frac{2x-2}{3}\)
<=> 3(x + 1) \(\ge\)2(2x - 2)
<=> 3x + 3 \(\ge\)4x - 4
<=> 7 \(\ge\)x
<=> x \(\le7\)
Vậy x \(\le\)7 là nghiệm của bất phương trình
Biểu diễn
-----------------------|-----------]|-/-/-/-/-/-/>
0 7
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(x^3+x^2+2x-16\ge0\)
\(\Leftrightarrow x^3-2x^2+3x^2-6x+8x-16\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x+8\right)\ge0\)
Mà \(x^2+3x+8>x^2+3x+2,25=\left(x+1,5\right)^2\ge0\)
Cho nên \(x-2\ge0\)
\(\Leftrightarrow x\ge2\)
a,x^3-2x^2+3x^2-6x+8x-16>=0
(x^2+3x+8)(x-2)>=0
x^2+3x+8>0
=> để lớn hơn hoac bang 0 thì x-2 phải>=0
=>x>=2
b,hình như là vô nghiệm ko chắc chắn lắm
![](https://rs.olm.vn/images/avt/0.png?1311)
A/ \(2\left(5x-3\right)=7x-18.\)
\(10x-6=7x-18\)
\(10-7x=6-18\)
\(3x=-12\)
\(x=-\frac{12}{3}=4\)
\(\Rightarrow S=\left\{4\right\}\)
B/ \(3x\left(x-2\right)+2x-4=0\)
\(3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\left(x-2\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x-2=0\Rightarrow x=2\\3x+2=0\Rightarrow3x=-2\Rightarrow x=-\frac{2}{3}\end{cases}}\)
\(\Rightarrow S=\left\{2;-\frac{2}{3}\right\}\)
C/ \(\frac{x+2}{3}\frac{x-3}{2}=\frac{x+5}{4}\)
\(\frac{\left(x+2\right)\left(x-3\right)}{3.2}=\frac{x+5}{4}\)
\(\frac{x^2-3x+2x-6}{6}=\frac{x+5}{4}\)
\(\frac{x^2-x-6}{6}=\frac{x+5}{4}\)
\(\frac{2\left(x^2-x-6\right)}{12}=\frac{3\left(x+5\right)}{12}\)
\(\frac{2x^2-2x-12}{12}=\frac{3x+15}{12}\)
\(\Rightarrow2x^2-2x-12=3x+15\)
(chuyển vế r làm tiếp)
Bài 1 :
\(a,2\left(5x-3\right)=7x-18\)
\(\Leftrightarrow10x-6=7x-18\)
\(\Leftrightarrow10x-7x=6-18\)
\(\Leftrightarrow3x=-12\)
\(\Leftrightarrow x=-4\)
PT có nghiệm S = { -4 }
\(b,3x\left(x-2\right)+2x-4=0\)
\(\Leftrightarrow3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x^2-4x-4=0\)
\(\Leftrightarrow3x^2-6x+2x-4=0\)
\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=2\end{cases}}\)
KL : ............
\(c,\frac{x+2}{3}-\frac{x-3}{2}=\frac{x+5}{4}\)
\(\Leftrightarrow\frac{4\left(x+2\right)}{12}-\frac{6\left(x-3\right)}{12}=\frac{3\left(x+5\right)}{12}\)
\(\Leftrightarrow4x+8-6x+18=3x+15\)
\(\Leftrightarrow4x-6x-3x=-8-18+15\)
\(\Leftrightarrow x=-9\)
KL : .......
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne-1\)
\(\frac{3x}{2}+\frac{x}{x+1}=2\)
\(\Leftrightarrow\frac{3x\left(x+1\right)}{2\left(x+1\right)}+\frac{2x}{2\left(x+1\right)}=\frac{4\left(x+1\right)}{2\left(x+1\right)}\)
\(\Rightarrow3x\left(x+1\right)+2x=4\left(x+1\right)\)
\(\Leftrightarrow3x\left(x+1\right)+2x-4\left(x+1\right)=0\)
\(\Leftrightarrow3x^2+3x+2x-4x-4=0\)
\(\Leftrightarrow3x^2+x-4=0\)
\(\Leftrightarrow3x^2-3x+4x-4=0\)
\(\Leftrightarrow3x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\3x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{4}{3}\end{cases}}\)
2 ngiệm vừa tìm được đều thỏa mãn ĐKXĐ.
Vậy tập nghiệm của phương trình là \(S=\left\{1;-\frac{4}{3}\right\}.\)
3x/2 + x/x+1 = 2 <=> 3x(x+1)/2(x+1) + 2x/2(x+1) = 4(x+1)/2(x+1) \(\frac{3}{2}\). NHÂN PHÁ NGOẶC VÀ KHỬ MẪU TA ĐC:
<=> 3x2 + 3x + 2x = 4x + 4 <=> 3x2 + x - 4 = 0\(\Delta\)
Đen - ta (kí hiệu tam giác) = b2 - 4ac = 12 - 4.(-4).3 = 1 + 48 = 49 > 0 => Phương trình có 2 nghiệm phân biệt :
x1 = -b+ căn đen ta / 2a = -1 + căn 49 / 2.3 = 6/6 =1
x2 = -b - căn đen ta / 2a = -1 - căn 49 / 2.3 = -8/6
Vậy phương trình có 2 nghiệm phân biệt là : S\(\hept{\begin{cases}\\\end{cases}}1,-\frac{8}{6}\)
\(\frac{-3x+5}{2}< 1\Leftrightarrow\frac{-3x+5}{2}-1< 0\)
\(\Leftrightarrow\frac{-3x+5-2}{2}< 0\Leftrightarrow\frac{-3x+3}{2}< 0\)
\(\Rightarrow-3x+3< 0\)vì 2 > 0
\(\Leftrightarrow-3\left(x-1\right)< 0\Leftrightarrow x-1>0\Leftrightarrow x>1\)
Vậy tập nghiệm của bất phương trình là S = { x | x > 1 }