\(\frac{7+x}{4}\)+\(\frac{3}{2}\)<
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

\(\frac{7+x}{4}+\frac{3}{2}< \frac{x-2}{2}+6\)

\(\Leftrightarrow7+x+6< 2x-4+24\)

\(\Leftrightarrow x+13>2x+20\)

\(\Leftrightarrow x< -7\)

\(\frac{7+x}{4}+\frac{3}{2}< \frac{x-3}{2}+6\)

\(\Rightarrow\frac{x+13}{4}< \frac{x+10}{2}\)

\(\Rightarrow x+13< 2x+20\)

\(\Rightarrow-x< 7\)

\(\Rightarrow x>-7\)

11 tháng 6 2017

1)

a) \(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}< =>\frac{2\left(x+5\right)}{2\left(3x-6\right)}-\frac{3x-6}{2\left(3x-6\right)}=\frac{3\left(2x-3\right)}{3\left(2x-4\right)}.\)

(đk:x khác \(\frac{1}{2}\))

\(\frac{2x+10}{6x-12}-\frac{3x-6}{6x-12}=\frac{6x-9}{6x-12}< =>2x+10-3x+6=6x-9< =>x=\frac{25}{7}\)

Vậy x=\(\frac{25}{7}\)

b) /7-2x/=x-3 \(x\ge\frac{7}{2}\)

(đk \(x\ge3,\frac{7}{2}< =>x\ge\frac{7}{2}\))

\(\Rightarrow\orbr{\begin{cases}7-2x=x-3\\7-2x=-\left(x-3\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{3}\left(< \frac{7}{2}\Rightarrow l\right)\\x=4\left(tm\right)\end{cases}}}\)

Vậy x=4

2)

\(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}>\frac{x-4}{5}+\frac{x-5}{6}\)

\(\Leftrightarrow\frac{30\left(x-1\right)}{60}+\frac{20\left(x-2\right)}{60}+\frac{15\left(x-3\right)}{60}-\frac{12\left(x-4\right)}{60}-\frac{10\left(x-5\right)}{60}>0\)

\(\Leftrightarrow30x-30+20x-40+15x-45-12x+48-10x+50>0\Leftrightarrow43x-17>0\Leftrightarrow x>\frac{17}{43}\)

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

a, Đặt \(x^2-4x+8=a\left(a>0\right)\)

\(\Rightarrow a-2=\frac{21}{a+2}\)

\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)

Thay vào là ra

9 tháng 3 2020

b) ĐK: \(y\ne1\)

bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)

<=> \(\frac{3y^2-3y}{1-y^3}\le0\)

\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)

\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)

vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

nên bpt <=> \(y\ge0\)

17 tháng 2 2018

b, \(\frac{3x-2}{5}\ge\frac{x+1,6}{2}\)

=> \(6x-4\ge5x+8\)

=> \(x-12\ge0\)

=> \(x\ge12\)

bpt 2: \(\frac{6-2x+5}{6}>\frac{3-x}{4}\)

=> \(\frac{11-2x}{6}>\frac{3-x}{4}\)

=> \(44-8x>18-6x\)

=> \(x< 13\)

Vậy để t/m cả 2 bpt thì : \(12\le x< 13\)

17 tháng 2 2018

a, \(\frac{x^2+x^2-4}{x\left(x-2\right)}>2\) (Đk : \(x\ne\left(0;2\right)\))

=> \(2x^2-4>2x^2-4x\)

=> \(4x-4=4\left(x-1\right)>0\)

=> \(x>1\)(t/m) 

31 tháng 3 2020

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

31 tháng 3 2020

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

24 tháng 4 2019

 \(\frac{x-5}{3}< \frac{x-8}{4}\Rightarrow4.\left(x-5\right)< 3.\left(x-8\right)\Rightarrow4x-20< 3x-24\Rightarrow x< -4\)

24 tháng 4 2019

a) \(\frac{x-5}{3}< \frac{x-8}{4}\)
<=> \(\frac{4\left(x-5\right)}{12}< \frac{3\left(x-8\right)}{12}\)

<=> \(4\left(x-5\right)< 3\left(x-8\right)\)

<=> \(4x-20< 3x-24\)

<=> \(4x-3x< 20-24\)

<=> \(x< -4\)
Vậy bất phương trình có tập nghiệm là { x l x < -4 }

b) \(\frac{x+3}{4}+1< x+\frac{x+2}{3} \)

<=> \(\frac{3\left(x+3\right)}{12}+\frac{12}{12}< \frac{12x}{12}+\frac{4\left(x+2\right)}{12}\)

<=>  \(3\left(x+3\right)+12< 12x+4\left(x+2\right)\)

<=>  \(3x+9+12< 12x+4x+8\)

<=>  \(3x-12x-4x< 8-9-12\)

<=>  \(-13x< -13\)

<=>  \(x>1\)
Vậy bất phương trình có tập nghiệm là { x l x > 1 }


 

24 tháng 4 2017

A . 3x + 2(x + 1) = 6x - 7

<=> 3x + 2x + 2 = 6x -7

<=> 5x - 6x = -7 - 2

<=> -x = -9

<=> x =9

B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)

=> 3(x +3) < 5(5 -x)

<=> 3x+9 < 25 - 5x

<=> 3x + 5x < 25 - 9

<=> 8x < 16

<=> x < 2

C . \(\frac{5}{x+1}\)\(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{x^2+x-4x-4_{ }}\)\(\frac{2}{x-4}\)

<=> \(\frac{5}{x+1}\)\(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)\(\frac{2}{x-4}\)

<=> 5(x - 4) + 2x = 2(x +1)

<=> 5x - 20 + 2x = 2x + 2

<=>7x - 2x = 2 + 20

<=> 5x = 22

<=> x =\(\frac{22}{5}\)