Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ax-b>bx+a\)
Kết quả:
\(-\left(b-a\right)x-b-a>0\)
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)
<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)
Giờ biện luận theo a và b thôi
a. \(m-2\ge\left(2m-1\right)x-3\Leftrightarrow m+1\ge\left(2m-1\right)x\)
Với \(2m-1=0\Rightarrow m=\frac{1}{2},bpt\Leftrightarrow\frac{3}{2}\ge0\) đúng với mọi x.
Với \(2m-1>0\Rightarrow m>\frac{1}{2},bpt\Leftrightarrow x\le\frac{m+1}{2m-1}\)
Với \(2m-1< 0\Rightarrow m< \frac{1}{2},bpt\Leftrightarrow x\ge\frac{m+1}{2m-1}\)
Với \(m>\frac{1}{2},\) S = ( \(-\infty;\frac{m+1}{2m-1}\)]
Vậy với \(m=\frac{1}{2}\Rightarrow S=R.\)
Với \(m< \frac{1}{2},\)S = [ \(\frac{m+1}{2m-1};+\infty\))
b. \(bpt\Leftrightarrow\frac{\left(ax+1\right)\left(a+1\right)-\left(ax-1\right)\left(a-1\right)}{a^2-1}>0\)
\(\Leftrightarrow\frac{2ax+2a}{a^2-1}>0\)
Với a > 1 thì \(a^2-1>0\Rightarrow ax+a>0\Rightarrow x+1>0\Rightarrow x>-1\forall a>1\)
Vậy với a > 1 thì bpt luôn có tập nghiệm \(S=\left(-1;+\infty\right)\)
ĐKXĐ: a\(\ne0\)
-Với a>0, BPT trở thành:
\(\left(a+1\right)x+ax-1>1\)
\(\Leftrightarrow\left(2a+1\right)x>1\)
\(\Leftrightarrow x>\frac{2}{2a+1}\) với a>0
-Với a<0, BPT trở thành:
\(\left(2a+1\right)x< 2\)
\(\Leftrightarrow x< \frac{2}{2a+1}\)
\(ax+4>2x+a\)
\(\Leftrightarrow ax-2x>a-4\)
\(\Leftrightarrow\left(a-2\right)x>a-4\)
Nếu \(a>2\) thì nghiệm của bất phương trình là \(x>\dfrac{a-4}{a-2}\)
Nếu \(a< 2\) thì nghiệm của bất phương trình là \(x< \dfrac{a-4}{a-2}\)
Nếu \(a=2\) thì bất phương trình có dạng \(0x>-2\), nghiệm đúng với mọi x
B1:nhập a,b,c
B2: Tính đen ta = b^2-4ac
B3: nếu a<0 thì phương trình vô nghiệm =>B6
B4:nếu a=0 thì pt có nghiệm kép x=-b/2a => B6
B5:nếu a>0 thì pt có 2 nghiệm phân biệt x1= (-b+căn đen ta)/2a ; x2= (-b-căn đen ta)/2a =>B6
B6 :kết thúc,
nếu muốn vẽ bằng sơ đồ khối thì xem tại: https://vubinh94.wordpress.com/tag/so-do-khoi-giai-phuong-trinh-bac-2-ax2bxc0/
ax-b>bx+a
<=>ax-a>bx+b
<=>a(x-1)-b(x-1)>0
<=>(x-1)(a-b)>0
th1:x-1>0 th2:a-b>0
x>1
Thx trc nếu bạn
cảm ơn bạn nha