Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải các phương trình, bất phương trình sau:
a,-4x+5>-2
b,(√3−2)3x< hoặc = 12
c,giá trị tuyệt đối của 2x+7 =3
a, -4x + 5 > -2
<=> -4x > -7
<=> x< 7/4
Giao lưu:
Nhân 2
\(\Leftrightarrow y^2-6y+10>0\)
(y-3)^2+1>0 => dúng với mọi y=> đúng với mọi x
E rằng ngonhuminh không bắt được cái gió mùa này rồi:
\(2x^2-6x+5>0\Leftrightarrow4x^2-12x+10>0\Leftrightarrow\left(2x-3\right)^2+1>0\)
Ta có \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1>0\)
Vậy bất phương trình đã cho nguyện đúng với mọi x.
Do \(x^6-x^3+x^2-x+1=\left(x^3-\dfrac{1}{2}\right)^2+\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\) ; \(\forall x\) nên BPT tương đương:
\(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\ge0\)
\(\Leftrightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}\le\sqrt{26}\) (1)
Ta có:
\(VT=\sqrt{\left(2x-1\right)^2+3^2}+\sqrt{\left(2-2x\right)^2+2^2}\ge\sqrt{\left(2x-1+2-2x\right)^2+\left(3+2\right)^2}=\sqrt{26}\) (2)
\(\Rightarrow\left(1\right);\left(2\right)\Rightarrow\sqrt{4x^2-4x+10}+\sqrt{4x^2-8x+8}=\sqrt{26}\)
Dấu "=" xảy ra khi và chỉ khi \(2\left(2x-1\right)=3\left(2-2x\right)\Leftrightarrow x=\dfrac{4}{5}\)
Vậy BPT có nghiệm duy nhất \(x=\dfrac{4}{5}\)
BPT <=> 5-4x > 2x-1 <=> 6x < 6 <=> x < 1
Hoặc 4x-5 < 2x-1 <=> 2x < 4 <=> x < 2
Kết hợp ta có: x < 1