Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 1 )( x + 2 ) > ( x - 1 )2 + 3
<=> x2 + x - 2 > x2 - 2x + 1 + 3
<=> x2 + x - x2 + 2x > 1 + 3 + 2
<=> 3x > 6 <=> x > 2
Vậy bpt có tập nghiệm { x | x > 2 }
x( 2x - 1 ) - 8 < ( 5 - 2x )( 1 - x )
<=> 2x2 - x - 8 < 2x2 - 7x + 5
<=> 2x2 - x - 2x2 + 7x < 5 + 8
<=> 6x < 13 <=> x < 13/6
Vậy bpt có tập nghiệm { x | x < 13/6 }
(x-3) (x+1) > (x-3) (-2x+10)
<=> x + 1 > -2x + 10 (nhân cả 2 vế cho \(\frac{1}{x-3}\))
<=> 2x + x > 10 - 1
<=> 3x > 9
<=> x > 3
Vậy x > 3
Họcc Tốtt.
\(\left(x-3\right)\left(x+1\right)>\left(x-3\right)\left(-2x+10\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-\left(x-3\right)\left(-2x+10\right)>0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1+2x-10\right)>0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-11\right)>0\)
TH1: \(\orbr{\begin{cases}x-3>0\Rightarrow x>3\\3x-11>0\Rightarrow x>\frac{11}{3}\end{cases}\Rightarrow x>\frac{11}{3}}\)
TH2: \(\orbr{\begin{cases}x-3< 0\Rightarrow x< 3\\3x-11< 0\Rightarrow x< \frac{11}{3}\end{cases}\Rightarrow x< 3}\)
Vậy \(x>\frac{11}{3}\)hoặc \(x< 3\)
Ngoài cách làm theo TH1 & TH2 thì bạn có thể làm theo bảng xét dấu cũng được.
a) \(3-2x>4\)
\(\Leftrightarrow-2x>1\)
\(\Leftrightarrow x< \frac{-1}{2}\)
b) \(\frac{2}{3-x}-\frac{9}{3+x}=\frac{1}{2}\)ĐKXĐ : \(x\pm3\)
\(\Leftrightarrow\frac{-4\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}-\frac{18\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{\left(x-3\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow-4x-13-18x+54=x^2-9\)
\(\Leftrightarrow x^2+22x-50=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot11+11^2-171=0\)
\(\Leftrightarrow\left(x+11\right)^2=\left(\pm\sqrt{171}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{171}-11\\x=-\sqrt{171}-11\end{cases}}\)( thỏa )
Vậy....
\(a,\)\(3-2x>4\)
\(\Rightarrow-2x>1\)
\(\Rightarrow x< \frac{-1}{2}\)
\(\frac{2x-1}{x+2}>3\)
\(\Rightarrow\frac{2x-1}{x+2}-3>0\)
\(\Rightarrow\frac{2x-1}{x+2}-\frac{3x+6}{x+2}>0\)
\(\Rightarrow\frac{-x-7}{x+2}>0\)
TH1 :\(\hept{\begin{cases}x-7>0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -7\\x>-2\end{cases}}\left(lọai\right)\)
TH2 : \(\hept{\begin{cases}-x-7< 0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-7\\x< -2\end{cases}}\Rightarrow-7< x< -2\)
Vậy -7 < x < -2