K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2024

\(1.2\left(x+2\right)^2< 2x\left(x+2\right)+4\\ \Leftrightarrow2\left(x^2+4x+4\right)-2x\left(x+2\right)-4< 0\\ \Leftrightarrow2x^2+8x+4-2x^2-4x-4< 0\\ \Leftrightarrow4x< 0\\ \Leftrightarrow x< 0\\ 2.\left(x-1\right)^2+x^2< \left(x+1\right)^2+\left(x+2\right)^2\\ \Leftrightarrow x^2-2x+1+x^2< x^2+2x+1+x^2+4x+4\\ \Leftrightarrow2x^2-2x+1-2x^2-6x-5< 0\\ \Leftrightarrow-8x-4< 0\\ \Leftrightarrow8x>-4\\ \Leftrightarrow x>-\dfrac{1}{2}\\ 3.\left(x^2+1\right)\left(x-6\right)< \left(x-2\right)^3\\ \Leftrightarrow x^3-6x^2+x-6< x^3-6x^2+12x-8\\ \Leftrightarrow x-6< 12x-8\\ \Leftrightarrow12x-x>-6+8\\ \Leftrightarrow11x>2\\ \Leftrightarrow x>\dfrac{2}{11}\)

15 tháng 8 2018

a/\(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+\left|x-3\right|=x+3+3-x=6\)

b/ \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\left|x\right|=\left|x+2\right|-\left|x\right|=-x-2-\left(-x\right)=-x-2+x=-2\)

c/ \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\cdot\left(x-1\right)=\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=\left|x-1\right|\)

d/ \(\left|x-2\right|+\dfrac{\sqrt{x^2-4x+4}}{x-2}=2-x+\dfrac{\sqrt{\left(x-2\right)^2}}{x-2}=2-x+\dfrac{\left|x-2\right|}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)

6 tháng 10 2018

Thời gian có hạn copy cái này hộ mình vào google xem nha: :

Link :   https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi

Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....

Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách

OKxx

16 tháng 7 2016

a) 1

b) \(2\sqrt{x-2}+\sqrt{x+2}\)

c)câu này để bạn tự làm nhé

26 tháng 7 2018

\(A=3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow6\sqrt{2}-5\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(\Leftrightarrow\sqrt{2}-\sqrt{\sqrt{2}-1}\)

\(B=2.\dfrac{2}{x-1}.\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{x^2-2x+1}}{2x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{\sqrt{\left(x-1\right)^2}}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x-1}.\dfrac{x-1}{x}\)

\(\Leftrightarrow\)\(2.\dfrac{1}{x}\)

\(\Leftrightarrow\)\(\dfrac{2}{x}\)

b: \(\dfrac{x^2+x+2}{x^2-x-2}>=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)>0\)

=>x>2 hoặc x<-1

c: \(\dfrac{3x^2-x-4}{2x^2-x+3}>0\)

\(\Leftrightarrow3x^2-4x+3x-4>0\)

=>(3x-4)(x+1)>0

=>x>4/3 hoặc x<-1

29 tháng 10 2017

\(x^2-5x+6\ge0\)

\(x^2-2x-3x+6\ge0\)

\(x\left(x-2\right)-3\left(x-2\right)\ge0\)

\(\left(x-3\right)\left(x-2\right)\ge0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-3\ge0\\x-2\ge0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3\le0\\x-2\le0\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}x\ge3\\x\ge2\end{cases}}\) hoặc \(\hept{\begin{cases}x\le3\\x\le2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)

vậy tập nghiệm của phương trình là \(\orbr{\begin{cases}x\ge3\\x\le2\end{cases}}\)

\(x^2-6x+8< 8\)

\(x^2-4x-2x+8< 0\)

\(x\left(x-4\right)-2\left(x-4\right)< 0\)

\(\left(x-2\right)\left(x-4\right)< 0\)

\(\Rightarrow\)\(\hept{\begin{cases}x-2>0\\x-4< 0\end{cases}}\)   hoặc  \(\hept{\begin{cases}x-2< 0\\x-4>0\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}x>2\\x< 4\end{cases}}\)  hoặc    \(\hept{\begin{cases}x< 2\\x>4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2< x< 4\\\varnothing\end{cases}}\)

vậy  \(2< x< 4\)   hay \(x=3\)

\(\frac{x-1}{3}-\frac{2x+1}{2}< \frac{5x+1}{6}-x\)

\(\frac{\left(x-1\right).2}{6}-\frac{\left(2x+1\right).3}{6}< \frac{5x+1}{6}-\frac{6x}{6}\)

\(2x-2-6x-3< 5x+1-6x\)

\(-3x< 6\)

\(x>-2\)

vậy tập nghiệm của bất phương trình là \(x>-2\)