\(\frac{ac}{bd}\)=\(\frac{a^2+c^2}{b^2+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

Giải:

a,Từ\(\frac{a}{b}\)=\(\frac{c}{d}\)

=>\(\frac{a}{b}\).\(\frac{c}{d}\)=\(\frac{a}{b}\).\(\frac{a}{b}\)=\(\frac{c}{d}\).\(\frac{c}{d}\)

=>\(\frac{ac}{bd}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta được:

\(\frac{ac}{bd}\)=\(\frac{a^2}{b^2}\)=\(\frac{c^2}{d^2}\)=\(\frac{a^2+c^2}{b^2+d^2}\)

=>\(\frac{ac}{bd}\)=\(\frac{a^2+b^2}{c^2+d^2}\)  (đpcm)

b,Áp dụng tính chất dãy tỉ số bằng nhau,ta được:

\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{2c}{2d}\)=\(\frac{a+2c}{b+2d}\)=\(\frac{a+c}{b+d}\)

=>\(\frac{a+2c}{b+2d}\)=\(\frac{a+c}{b+d}\)

=>(b+d).(a+2c)=(a+c),(b+2d)   (đpcm)

9 tháng 8 2016

tick nha

13 tháng 12 2017

a, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)'

Ta  có: \(\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(\frac{3a+2c}{3b+2d}=\frac{3bk+2dk}{3b+2d}=\frac{k\left(3b+2d\right)}{3b+2d}=k\left(2\right)\)

Từ (1) và (2) => đpcm

b, Đặt a/b=c/d=k => a=bk,c=dk

Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\left(2\right)\)

Từ (1) và (2) => đpcm

4 tháng 8 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{2c^2}{2d^2}=\frac{a}{b}=\frac{2c^2-ac}{2d^2-bd}\)

Vậy...

Ps : Cái này mk học roy nên chắc v! 

4 tháng 8 2017

mk cũng đang hóng suốt từ sáng câu hỏi này, cảm ơn bn

24 tháng 10 2018

\(1,\)

\(a,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\dfrac{a}{c}=\dfrac{a+b}{c+d}\Rightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\left(đpcm\right)\)

\(b,\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\)

\(\dfrac{a}{c}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(2,\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b+c}=\dfrac{b}{c+a}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+c+a+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2.\left(a+b+c\right)}=\dfrac{1}{2}\)

\(3,\)

\(\dfrac{2a+13b}{3a-7b}=\dfrac{2c+13d}{3c-7d}\)

\(\Rightarrow\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\text{​​}\dfrac{2a+13b}{2c+13d}=\dfrac{3a-7b}{3c-7d}=\dfrac{2a+13b+3a-7b}{2c+13d+3c-7d}=\dfrac{5a+6b}{5c+6d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{6b}{6d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

\(4,\) https://hoc24.vn/hoi-dap/question/157445.html

15 tháng 10 2017

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{2c^2}{2d^2}=\frac{ac}{bd}\)

Ta có : \(\frac{2c^2}{2d^2}=\frac{ac}{bd}=\frac{2c^2-ac}{2d^2-bd}\)

Vậy \(\frac{a^2}{b^2}=\frac{2c^2-ac}{2d^2-bd}\)