Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, a)Vs a,b,c >0 ,áp dụng bđt svac-xơ có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)
<=> \(\frac{1}{a+b+c}\ge\frac{9}{a+b+c}\) (vô lý)
=>Phương trình \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) vô nghiệm
\(a\text{) }pt\Leftrightarrow\left(m-2\right)x=m+1\)
\(+m-2=0\Leftrightarrow m=2\) thì pt trở thành 0 = 3 (vô lí) => pt vô nghiệm.
\(+m-2\ne0\Leftrightarrow m\ne2\) thì pt tương đương \(x=\frac{m+1}{m-2}\)
Vậy:
+m = 0 thì pt vô nghiệm.
+m khác 0 thì pt có nghiệm duy nhất \(x=\frac{m+1}{m-2}\)
\(b\text{) }pt\Leftrightarrow\left(m^2-2\right)x=-4\)
\(+m^2-2=0\Leftrightarrow m=\sqrt{2}\text{ hoặc }m=-\sqrt{2}\) thì pt thành 0 = -4 (vô lí) => pt vọ nghiệm.
\(+m^2-2\ne0\Leftrightarrow m\ne\sqrt{2};-\sqrt{2}\)thì pt tương đương \(x=\frac{-4}{m^2-2}\)
Vậy:
+m=√2 ; -√2 thì pt vô nghiệm.
+m khác √2; -√2, pt có nghiệm duy nhất \(x=-\frac{4}{m^2-2}\)
a) \(m\left(x-1\right)=2x+1\)
\(\Leftrightarrow xm-m=2x+1\)
\(\Leftrightarrow xm-2x=m+1\)
\(\Leftrightarrow x\left(m-2\right)=m+1\) (*)
+) Nếu \(m-2\ne0\Leftrightarrow m\ne2\)
Phương trình có 1 nghiệm duy nhất \(x=\frac{m+1}{m-2}\)
+) Nếu m = 2
(*) \(\Leftrightarrow0x=3\) ( vô lí )
Suy ra phương trình vô nghiệm
Vậy khi \(m\ne2\) thì phương trình có 1 nghiệm duy nhất \(x=\frac{m+1}{m-2}\)
khi m = 2 thì phương trình vô nghiệm