K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 9 2024

Gọi độ dài cạnh lăng trụ là a

Trong mp (ABC), lấy D đối xứng B qua AC \(\Rightarrow ABCD\) là hình thoi

Trong mp (A'B'C') lấy D' đối xứng B' qua A'C' \(\Rightarrow A'B'C'D'\) là hình thoi

\(\Rightarrow A'BCD'\) là hình bình hành nên \(A'B||D'C\)

\(\Rightarrow\left(A'B,B'C\right)=\left(D'C,B'C\right)=\widehat{B'CD'}\) (nếu nó nhọn, và bằng góc bù với nó nếu nó tù)

\(D'C=A'B=\sqrt{A'A^2+AB^2}=a\sqrt{2}\)

\(B'C=\sqrt{B'B^2+BC^2}=a\sqrt{2}\)

\(B'D'=BD=2.\dfrac{a\sqrt{3}}{2}=a\sqrt{3}\)

Áp dụng định lý hàm cos:

\(cos\widehat{B'CD'}=\dfrac{B'C^2+D'C^2-B'D'^2}{2B'C.D'C}=\dfrac{1}{4}\)

\(\Rightarrow\left(A'B,B'C\right)\approx75^031'\)

NV
23 tháng 9 2024

loading...

NV
20 tháng 12 2022

4.

Đáp án A đúng

\(y'=9x^2+3>0;\forall v\in R\)

6.

Đáp án  B đúng

\(y'=3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)

\(\Rightarrow\) Hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)

Do \(\left(2;+\infty\right)\subset\left(1;+\infty\right)\) nên hàm cũng đồng biến trên \(\left(2;+\infty\right)\)

25 tháng 5 2016

chữ nhỏ quá mk ko thấy  j cả

25 tháng 5 2016

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với

20 tháng 7 2016

Mình thấy có phân biệt gì giữa hàm đa thức và phân thức đâu bạn.

Theo định nghĩa thì hàm đạt cực trị tại y'=0; đồng biến khi y' > 0 và nghịch biến khi y' < 0.

Cách làm bài hàm bậc 3 ở trên là chưa chính xác.

17 tháng 6 2021

Với hàm đa thức thì xét y’>=0 nhé bạn, có khác nhau đất

CT
11 tháng 1 2023

Em muốn hỏi gì vậy?

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)

4 tháng 2 2016

đặt x =tant 

là xong trong 1 nốt nhạc

4 tháng 2 2016

 

Tách sin^2 = 1-cos^2=(1-cos)(1+cos)

 


Dùng phương pháp đồng nhất hệ số, đưa về thế này

1/cos +1/2(1-cos) -1/2(1+cos)

 

15 tháng 3 2017

Câu 31 thử ĐA

Câu 33: có công thức

Câu 35: Gọi A là giao điểm d và \(\Delta\) => A(1 +2t; t -1; -t )\(\in\) d

\(\overrightarrow{MA}=\left(2t-1;t-2;-t\right)\)\(\overrightarrow{MA}\perp\Delta\Rightarrow\overrightarrow{MA}.\overrightarrow{u_{\Delta}}=0\Leftrightarrow t=\dfrac{2}{3}\)=> ĐA: D

15 tháng 3 2017

Em cần hỏi c 34 í ạ. Dạ còn c 31 kh có cách giải ra hả anh

NV
21 tháng 9 2021

31.

\(y'=\dfrac{1+m}{\left(x+1\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi:

\(\dfrac{1+m}{\left(x+1\right)^2}>0\Rightarrow m>-1\) (C)

32.

\(y'=\dfrac{4-m^2}{\left(x+4\right)^2}\)

Hàm đồng biến trên các khoảng xác định khi:

\(4-m^2>0\Rightarrow-2< m< 2\)

\(\Rightarrow m=\left\{-1;0;1\right\}\)

Có 3 giá trị nguyên của m

NV
21 tháng 9 2021

33.

\(y'=\dfrac{m-1}{\left(x+1\right)^2}\)

Hàm đồng biến trên từng khoảng xác định khi:

\(m-1>0\Rightarrow m>1\)

34.

\(y'=\dfrac{2m-1}{\left(x+2m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}2m-1>0\\-2m>-3\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{2}< m< \dfrac{3}{2}\)

\(\Rightarrow m=1\)

Có 1 giá trị nguyên của m

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 17:

\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)

\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)

Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)

\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)

\(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)

\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 11)

Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)

\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)

\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)

\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)

Đáp án C

Câu 20)

Ta có:

\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)

\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)

\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)

Đáp án A.