K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2024

a; |6\(x\) + 22| + (y - 21)2 = 0

    |6\(x+22\) | ≥ 0; (y - 21)2 ≥ 0

    |6\(x\) + 22| + (y - 21)2 = 0 ⇔ \(\left\{{}\begin{matrix}6x+22=0\\y-21=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}6x=-22\\y=21\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-\dfrac{22}{6}\\y=21\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-\dfrac{11}{3}\\y=21\end{matrix}\right.\)

Vậy (\(x\); y) = (- \(\dfrac{11}{3}\); 21)

 

 

 

 

15 tháng 8 2024

b; 

A = |\(\dfrac{4}{3}\) - \(\dfrac{1}{4}\)| - \(\dfrac{2}{11}\)

A = |\(\dfrac{16}{12}\) - \(\dfrac{3}{12}\)| - \(\dfrac{2}{11}\)

A = | \(\dfrac{13}{12}\)| - \(\dfrac{2}{11}\)

A = \(\dfrac{13}{12}\) - \(\dfrac{2}{11}\)

A = \(\dfrac{143}{132}\)  - \(\dfrac{24}{132}\)

A = \(\dfrac{119}{132}\)

 

13 tháng 8 2019

+) Nếu\(x\ge\frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=x-\frac{1}{2}\)

\(\Rightarrow P=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)(1)

+) Nếu \(x< \frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=\frac{1}{2}-x\)

\(\Rightarrow P=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)

Mà \(x< \frac{1}{2}\Leftrightarrow2x< 1\Leftrightarrow-2x>-1\Leftrightarrow\frac{5}{4}-2x>\frac{1}{4}\)(1)

Từ (1) và (2) suy ra \(P\ge\frac{1}{4}\)

\(\Rightarrow P_{min}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

1 tháng 8 2018

\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)

Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)

Vậy \(x=1;y=-2;z=3\)

19 tháng 3 2018

\(\left|x-2016\right|+2017\)

giá tị nhỏ nhất là  2017 vì  \(\left|x-2016\right|\)có giá trị tuyêt đối nên lớn hơn hoặc bằng 0 

mà ở ngoài lại là +2017  nên biểu thức có giá trj = 0  suy ra 0+2017 =2017

biểu thức tiếp 

= 2018

13 tháng 3 2019

a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)

*TH1: \(x< 2016\):

\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)

*TH2: \(2016\le x< 2017\):

\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)

*TH3: \(2017\le x< 2018\):

\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)

*TH4: \(x\ge2018\):

\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)

Vậy GTNN của P là 2 khi x = 2017.

b) \(x-2xy+y-3=0\)

\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)

\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)

\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)

2x-15-51-1
1-2y1-15-5
x3-210
y01-23