Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x-2=2x-3
3x=2x-1
Bớt mỗi vế 2x
x=-1
b)3-4y+24+6y=y+27+3y
3-4y+6y=y+3+3y
3-4y+3y=y+3
<=> y=0
c.7-2x=22-3x
2x=15-3x
15=x
d.8x-3=5x+12
3x-3=12
3x=15
x=5
câu e hình như bạn thiếu đề
f)x+2x+3x-19=3x+5
6x-19=3x+5
3x-19=5
3x=24
<=>x=8
g)11=8x-3=5x-3+x
11=8x-3
11=6x-3
<=> x không tồn tại
h)4-2x+15=9x+4x-2x
4-2x+15=11x
<=> nghiệm trên có số thập phân vô hạn tuần hoàn nhé
T
Ngập mặt ~
Mình làm 1;2 câu thôi. Các câu sau bạn làm tương tự nhé.
a/ 3x - 2 = 2x - 3
<=> 3x - 2 - 2x + 3 = 0
<=> x + 1 = 0
<=> x = -1
b/ 3 - 4y + 24 + 6y = y + 27 + 3y
<=> 3 - 4y + 24 + 6y - y - 27 - 3y = 0
<=> -2y = 0
<=> y = 0
a) \(3x-2=2x-3\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
b) \(3-4y+24+6y=y+27+3y\)
\(\Leftrightarrow-2y=0\Leftrightarrow y=0\)
c) \(7-2x=22-3x\)
\(\Leftrightarrow x-15=0\)
\(\Leftrightarrow x=15\)
d) \(8x-3=5x+12\)
\(\Leftrightarrow3x-15=0\Leftrightarrow x=5\)
a)3x-2=2x-3
\(3x-2x=-3+2\)
\(x=-1\)
b)3-4y+24+6y=y+27+3y
\(-4y+6y-y-3y=27-24-3\)
\(-2y=0\)
\(y=0\)
c)7-2x=22-3x
\(-2x+3x=22-7\)
\(x=17\)
d)8x-3=5x+12
\(8x-5x=12+3\)
\(3x=15\)
\(x=5\)
chúc bạn học tốt
a, 3x-2=2x-3
<=>3x-2x=2-3
<=>x= -1
Vậy tập nghiệm của phương trình là S={-1}
b,3-4y+24+6y=y+27+3y
<=>2y+27=4y+27
<=>27-27=-2y+4y
<=>0=2y
Vậy TN của PT là S={0}
c,7-2x=22-3x
<=>-2x+3x=-7+22
<=>x=15
Vậy TN của PT là S={15}
d,8x-3=5x+12
<=>8x-5x=3+12
<=>3x=15
<=>x=5
Vậy TN của PT là S={5}
\(4.\left(3x+y\right)^2+\left(x+y\right)^2\)
\(=3x^2+6xy+y^2+x^2-2xy+y^2\)
\(=9x^2+6xy+y^2+x^2-2xy+y^2\)
\(=10x^2-4xy+2y^2\)
\(7.\left(x-4\right)^2+\left(x+4y\right)\)
\(=x^2-8x+16+x+4y\)
\(=x^2-7x+16+4y\)
\(10.\left(2x+7\right)^2+\left(-2x-3\right)^2\)
\(=4x^2+28x+49+4x^2+12x+9\)
\(=8x^2+40x+58\)
\(12.-\left(x+1\right)^2-\left(x-1\right)^2\)
\(=-\left(x^2+2x+1\right)-\left(x^2-2x+1\right)\)
\(=-x^2-2x-1+x^2+2x-1\)
\(=4x\)
\(5.-\left(x+5\right)^2-\left(x-3\right)^2\)
\(=-\left(x^2+10x+25\right)-\left(x^2-6x+9\right)\)
\(=-x^2-10-25+x^2+6x-9\)
\(=-16x-16\)
\(8.-\left(-2x+3\right)^2-\left(5x-3\right)^2\)
\(=4x^2+12x+9-25x^2+30x-9\)
\(=-21x^2+42x\)
\(11.-\left(2x-y\right)^2-\left(x+3y\right)^2\)
\(=-4x^2+4xy-y^2-\left(x^2+6xy+9y^2\right)\)
\(=-4x^2+4xy-y^2-x^2-6xy-9y^2\)
\(=-5x^2-2xy-10y^2\)
4: =9x^2+6xy+y^2+x^2-2xy+y^2
=10x^2+4xy+2y^2
5: =-x^2-10x-25-x^2+6x-9
=-4x-34
7; \(=x^2-8xy+16y^2+x+4y\)
10: \(=4x^2+28x+49+4x^2+12x+9\)
=8x^2+40x+58
11: =-4x^2+4xy-y^2-x^2-6xy-9y^2
=-5x^2-2xy-10y^2
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
a) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-12xy-\frac{12}{5}y^2+12xy=3x^2-\frac{12}{5}y^2\)
b) \(\left(4x^2-3y\right)\cdot2y-\left(3x^2-4y\right)\cdot3y\)
\(=8x^2y-6y^2-9x^2y+12y^2=-x^2y+6y^2\)
5x-3y = -1 => 15x -9y = -3(1)
3x+4y= 11=> 15x + 20y= 55(2)
Lấy (2)-(1) ta có 29y = 58 => y =2 => x= 1