K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

3x2 + 6xy + 3y2 - 5(x + y) 

= 3(x2 + 2xy + y2) - 5(x + y) 

= 3(x + y)2 - 5(x + y) 

= (x + y)[3(x + y) - 5]

= (x + y)(3x + 3y - 5) 

1 tháng 9 2021

3x2 + 6xy + 3y2 - 5( x + y )

= 3( x2 + 2xy + y2 ) - 5( x + y )

= 3( x + y )2 - 5( x + y )

= ( x + y )( 3x + 3y - 5 )

4 tháng 8 2015

P(x,y) = x^3 - 3x^2 + 3x^2y + 3xy^2 + y^3 - 3y^2 - 6xy + 3x + 3y

         = ( x^3 + 3x^2y + 3xy^2 + y^3 ) - ( 3x^2 + 3y^2 + 6xy ) + ( 3x + 3y)

         = ( x+  y)^3 - 3 ( x^2 + 2xy + y^2) + 3 ( x+  y)

         = ( x+  y)^3 - 3 ( x+ y)^2 + 3(x +y)

Thay x+  y = 101 ta có :

        = 101^3 - 3.101^2 + 3.101

         = 101 . ( 101^2 - 3.101 + 3 )

         = 101 .9901

        =  1000001

1000001

chắc chắn 100%

3 tháng 10 2018

Bài giải:

\(x^3-3x^2+3x^2y+3xy^2+y ^3-3y^2-6xy+3x+3y+2012\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(6xy+3x^2+3y^2\right)+\left(3x+3y\right)+2012\)

\(=\left(x+y\right)^3-3\left(2xy+x^2+y^2\right)+3\left(x+y\right)+2012\)

\(=101^3-3.101^2+3.101+2012\)

\(=101^3-3.101^2+3.101-1+2013\)

\(=100^3+2013=1002013\)

Tự kết luận nha bạn ^^

3 tháng 10 2018

<=>P=(x3+3x2y+3xy2+y3)+(-3x2-3y2)-6xy+(3x+3y)+2012

<=>P=(x+y)3-3(x2+y2)-6xy+3(x+y)+2012

<=>P=(x+y)3-3(x+y)2+6xy-6xy+3(x+y)+2012

<=>P=(x+y)3-3(x+y)2+3(x+y)+2012

<=>P=1013-3.1012+3.101+2012

=>P=1002013

27 tháng 6 2018

\(B=x^3-3x^2+3xy^2+3x^2y+y^3-3y^2-6xy+3x+3y+2012\\ =\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2012\\ =\left[\left(x+y\right)^3-3\left(x+y\right)^3+3\left(x+y\right)-1\right]+2013\\ =\left(x+y-1\right)^3+2013\)thay x+y=101 vào ta có

\(B=\left(101-1\right)^3+2013=1002013\)

\(P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2017\)

\(=\left(x+y-1\right)^3+2018\)

\(=100^3+2018\)

21 tháng 11 2017

\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)

21 tháng 11 2017

\(P=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2015\)

\(\Leftrightarrow P=x^3+3x^2y+3xy^2+y^3-3x^2-6xy-3y^2+3x+3y+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(3x^2+6xy+3y^2\right)+\left(3x+3y\right)+2015\)

\(\Leftrightarrow P=\left(x^3+3x^2y+3xy^2+y^3\right)-3\left(x^2+2xy+y^2\right)+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=\left(x+y\right)^3-3\left(x+y\right)^2+3\left(x+y\right)+2015\)

\(\Leftrightarrow P=101^3-3.101^2+3.101+2015\)

\(\Leftrightarrow P=1030301-30603+303+2015\)

\(\Leftrightarrow P=999698+303+2015\)

\(\Leftrightarrow P=1000001+2015\)

\(\Leftrightarrow P=1002016\)

12 tháng 9 2018

A=3(x2+2xy+y2)-2(x+y)-100=3(x+y)2-2.5-100=3.52-110=-35    

B=x3+3x2y+3xy2+y3-2(x2+2xy+y2)+3(x+y)+10=(x+y)3-2(x+y)2+3.5+10=53-2.52+25=100

trả lời:

A=3(x2+2xy+y2)-2(x+y)-100

=3(x+y)2-2.5-100

=3.52-110

=-35

B=x3+3x2y+3xy2+y3-2(x2+2xy+y2)+3(x+y)+10

 =(x+y)3-2(x+y)2+3.5+10

 =53-2.52+25

 =100

học tốt

4 tháng 8 2018

a) \(\dfrac{6x^2y^3-2x^2y+6xy}{6xy}\)

\(=\dfrac{6x^2y^3}{6xy}-\dfrac{2x^2y}{6xy}+\dfrac{6xy}{6xy}\)

\(=xy^2-\dfrac{x}{3}+1\)

b) \(\dfrac{4\left(x+y\right)^3}{2\left(x+y\right)}\)

\(=\dfrac{2\left(x+y\right).2\left(x+y\right)^2}{2\left(x+y\right)}\)

\(=2\left(x+y\right)^2\)

c) \(\dfrac{8x^3+27y^3}{2x+3y}\)

\(=\dfrac{\left(2x\right)^3+\left(3y\right)^3}{2x+3y}\)

\(=\dfrac{\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]}{2x+3y}\)

\(=4x^2-6xy+9y^2\)

d) \(\dfrac{48x^4y^3-12x^2y^5+6x^2y^2}{3x^2y^2}\)

\(=\dfrac{48x^4y^3}{3x^2y^2}-\dfrac{12x^2y^5}{3x^2y^2}+\dfrac{6x^2y^2}{3x^2y^2}\)

\(=16x^2y-4y^3+2\)

21 tháng 10 2017

a, ( x-y)2=4

21 tháng 10 2017

3x^2 +3y^2 -6xy -12

=3(x^2 - 2xy +y^2 - 2^2  )

=3 (x-y)^2 - 2^2 

=3(x-y-2)(x-y+2)

3(x+y) -(x^2+2xy+y^2)

=3(x+y) -(x+y)^2 

(x+y)(3-x-y)

14 tháng 7 2016

a)x3 + 3x2 + 3x

=x3 + 3x2 + 3x+1-1

=(x+1)3-1.Với x=99

=>A=(99+1)3-1=1003-1

=1 000 000 -1 = 999 999