Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
TH1: \(x\le-\frac{5}{2}\)
<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)
<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)
TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)
<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)
TH3: \(x>\frac{2}{5}\)
<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)
Vậy không có số x thỏa mãn đề bài
Bài 1:
Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Bài 3:
Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)
Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3
+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)
+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)
Vậy ...........
\(\left(\frac{9}{25}\right)^{-x}=\left(\frac{5}{3}\right)^{-6}\)
\(=>\left(\frac{3}{5}\right)^{-2x}=\left(\frac{5}{3}\right)^{-6}\)
\(=>\left(\frac{3}{5}\right)^{-2x}=\left(\frac{3}{5}\right)^6\)
\(=>-2x=6\)
\(=>x=-3\)
câu 2.
\(x^2-xy=-18\)
\(=>x\left(x-y\right)=-18\)
\(=>3x=-18\)
\(=>x=-6\)
\(\left(x-3\right).3=\left(2-x\right).\left(-2\right)\)
\(3x-9=-4+2x\)
\(-9+4=-3x+2x\)
\(-5=-x=>x=5\)
Bài 1:
\(\frac{x}{-8}=\frac{-18}{x}\)
\(\Rightarrow x^2=144\)
\(\Rightarrow x=\pm12\)
Vậy \(x=\pm12\)
Bài 3:
Giải:
Ta có: \(\frac{a}{b}=\frac{2,1}{2,7}\Rightarrow\frac{a}{2,1}=\frac{b}{2,7}\Rightarrow\frac{a}{21}=\frac{b}{27}\Rightarrow\frac{a}{7}=\frac{b}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{7}=\frac{b}{9}=\frac{5a}{35}=\frac{4b}{36}=\frac{5a-4b}{35-36}=\frac{-1}{-1}=1\)
+) \(\frac{a}{7}=1\Rightarrow a=7\)
+) \(\frac{b}{9}=1\Rightarrow b=9\)
\(\Rightarrow\left(a-b\right)^2=\left(7-9\right)^2=\left(-2\right)^2=4\)
Vậy \(\left(a-b\right)^2=4\)
Bài 4:
Giải:
Ta có: \(\frac{a}{b}=\frac{9,6}{12,8}\Rightarrow\frac{a}{9,6}=\frac{b}{12,8}\Rightarrow\frac{a}{96}=\frac{b}{128}\Rightarrow\frac{a}{3}=\frac{b}{4}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\)
\(\Rightarrow a=3k,b=4k\)
Mà \(a^2+b^2=25\)
\(\Rightarrow\left(3k\right)^2+\left(4k\right)^2=25\)
\(\Rightarrow9.k^2+16.k^2=25\)
\(\Rightarrow25k^2=25\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow a=3;b=4\)
+) \(k=-1\Rightarrow a=-3;b=-4\)
\(\Rightarrow\left|a+b\right|=\left|3+4\right|=\left|-3+-4\right|=7\)
Vậy \(\left|a+b\right|=7\)
Áp dụng BĐT
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)Ta có:
\(\left|2x-7\right|+\left|2x+1\right|=\left|2x-7\right|+\left|-2x-1\right|\ge\left|2x-7+\left(-2x-1\right)\right|=8\)
Mà \(\left|2x-7\right|+\left|2x+1\right|\ge\)8 nên không có số nguyên x nào thỏa mãn đề ra
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
Ta có: \(\frac{x}{y}=\frac{2}{3}\)
=> \(\frac{x}{2}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{y}{9}\)(1)
Có: \(\frac{x}{3}=\frac{z}{5}\)=> \(\frac{x}{6}=\frac{z}{10}\)(2)
Từ (1) ; (2) => \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)=> \(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{\frac{217}{4}}{217}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{36}=\frac{1}{4}\\\frac{y^2}{81}=\frac{1}{4}\\\frac{z^2}{100}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=9\\y^2=\frac{81}{4}\\z^2=25\end{cases}}\)
Vì x, y, z dương nên suy ra: \(\hept{\begin{cases}x=3\\y=\frac{9}{2}\\z=5\end{cases}}\)
=> \(x+2y-2z=3+2.\frac{9}{2}-2.5=2\)
Ta có : \(\frac{x}{y}=\frac{2}{3};\frac{x}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{x}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9};\frac{x}{6}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\)(k>0)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=9k\\z=10k\end{cases}}\)
Thay x=6k; y=9k; z=10k vào \(x^2+y^2+z^2=\frac{217}{4}\) ta có:
\(\left(6k\right)^2+\left(9k\right)^2+\left(10k^2\right)=\frac{217}{4}\)
\(\Rightarrow6^2.k^2+9^2.k^2+10^2.k^2=\frac{217}{4}\)
\(\Rightarrow k^2.\left(6^2+9^2+10^2\right)=\frac{217}{4}\)
\(\Rightarrow k^2.\left(36+81+100\right)=\frac{217}{4}\)
\(\Rightarrow k^2.217=\frac{217}{4}\)
\(\Rightarrow k^2=\frac{217}{4}.\frac{1}{217}=\frac{1}{4}\)
\(\Rightarrow k=\pm\frac{1}{2}\)
Mà k >0
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=6.\frac{1}{2}=3\\y=9.\frac{1}{2}=\frac{9}{2}\\z=10.\frac{1}{2}=5\end{cases}}\)( thỏa mãn x;y dương)
\(\Rightarrow x+2y-2z=3+2.\frac{9}{2}-2.5=3+9-10=2\)
Vậy x+2y-2z=2
a)\(\frac{-109}{-x}=\frac{109}{x}\)
=>x2=1092
=>x=(109;-109)
b) \(\frac{289}{x}=\frac{7x^2}{-119}\)
=>7x3=-34391
=>x3=-4913
=>x=-17
Ai k mk mk sẽ k lại
\(\frac{x-3}{2-x}=\frac{2}{3}\)
\(3\left(x-3\right)=2\left(2-x\right)\)
\(3x-9=4-2x\)
\(3x+2x=4+9\)
\(5x=13\)
\(x=\frac{13}{5}\)
\(\frac{x-3}{2-x}=\frac{2}{3}\)
\(\Rightarrow3.\left(x-3\right)=2.\left(2-x\right)\)
\(\Rightarrow3.x-9=4-2x\)
\(\Rightarrow3x+2x=4+9\)
\(\Rightarrow5x=13\)
\(\Rightarrow x=\frac{13}{5}\)