\(\frac{-1}{5}.\left(\frac{1}{4}-2x\right)^2\left|8x-1\right|+2016\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

x = 1/8 = 0,125

mk thi rùi 300đ

25 tháng 10 2016

uầy, thật á? Con lớp trưởng lớp tui giỏi thế mà nó kết hợp với thằng lớp trưởng bên lớp kia mà mới đc 290.

17 tháng 12 2016

GTLN là 2016 nha bạn

Số hạng đầu tiên có [1/4-2n]2 luôn dương 

=>-1/5[1/4-2n]2 luôn âm

..........

17 tháng 12 2016

Quốc Huy phải giải rõ ra chứ.Như mình nè:

Ta có:[1/4-2n]^2>=0

suy ra;-1/5[1/4-2n]<=0                               (1)

Lại có:|8x-1|>=0

suy ra : -|8x-1|<=0                                     (2)

Từ (1) và (2) suy ra:-1/5[1/4-2n]^2-|8x-1|<=0

suy ra:-1/5[1/4-2n]^2-|8x-1|+2016 <=2016

suy ra D<=2016

suy ra giá trị lớn nhất của D là 2016 khi 1/4-2n=0 và 8x-1=0

*Với 1/4-2n=0 suy ra 2n=1/4 suy ra n=1/4:2=1/4.1/2 suy ra n=1/8

*Với 8x-1=0 suy ra 8x=1 suy ra x=1/8

     Vậy giá trị lớn nhất của D là 2016 khi n=1/8 và x=1/8

27 tháng 2 2019

Ta có:

\(\left(\frac{1}{4}-2x\right)^2\ge0,\left|8x-1\right|\ge0\)

=> \(-\frac{1}{5}\left(\frac{1}{4}-2x\right)^2\le0,-\left|8x-1\right|\le0\)

=> \(C\le0+0\)+2016=2016

"=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{4}-2x=0\\8x-1=0\end{cases}\Leftrightarrow}x=\frac{1}{8}\)

Vậy C đạt giá trị lớn nhất là 2016 khi x=1/8

9 tháng 11 2016

Câu 1:

Ta thấy:

\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)

\(\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)

\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)

hay \(A\ge-2,5\)

Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)

20 tháng 11 2016

Cảm ơn bạn nhiều nhé!

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)Câu 6: Có bao nhiêu...
Đọc tiếp

Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất. 

Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)

Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)

Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)

Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)

Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y

Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...

Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...

Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn 

 

0
9 tháng 7 2016
  • Vì \(\left|x-\frac{1}{2}\right|\ge0\)

=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)

A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)

=>\(\left|x-\frac{1}{2}\right|=0\)

=>\(x-\frac{1}{2}=0\)

=>x=\(\frac{1}{2}\)

Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)

  • Vì \(\left|2x+4\right|\ge0\)

=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)

B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)

<=>|2x+4|=0

<=>2x+4=0

<=>2x=-4

<=>x=-2

Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2

28 tháng 8 2016

a) \(A=11-\left|\frac{2}{3}x+\frac{1}{2}\right|\) . Có: \(\left|\frac{2}{3}x+\frac{1}{2}\right|\ge0\)

\(\Rightarrow11-\left|\frac{2}{3}x+\frac{1}{2}\right|\le11\)

Dấu '=' xảy ra khi: \(\left|\frac{2}{3}x+\frac{1}{2}\right|=0\Rightarrow\frac{2}{3}x=-\frac{1}{2}\Rightarrow x=-\frac{3}{4}\) 

Vậy: \(Max_A=11\) tại \(x=-\frac{3}{4}\)

b) \(B=1+\frac{2}{1+\left|2x-1\right|}\) . Có: \(\frac{2}{1+\left|2x-1\right|}\ge0\Rightarrow1+\frac{2}{1+\left|2x-1\right|}\ge1\) 

Để B được giá trị lớn nhất thì \(1+\left|2x-1\right|\) đạt giá trị nhỏ nhất

\(1+\left|2x-1\right|\ge1\)

Dấu = xảy ra khi: \(\left|2x-1\right|=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)

Vậy: \(Max_B=1+\frac{2}{1}=3\) tại \(x=\frac{1}{2}\)

28 tháng 8 2016

Với x = \(11-\frac{1}{2}=\frac{21}{2}\)

\(\frac{21}{2}:\frac{2}{3}=\frac{63}{4}\)

Vậy với \(\frac{63}{4}\)thì đạt giá trị lớn nhất 

b) tương tự