\(x+1,25-1\frac{1}{4}+\frac{4}{5}=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

\(x+1,25-1\frac{1}{4}+\frac{4}{5}=0\)

\(x+1,25-1,25+0,8=0\)

\(x+0,8=0\)

\(x=-0,8=-\frac{4}{5}\)

21 tháng 8 2016

\(x+1.25-1\frac{1}{4}+\frac{4}{5}=0\)

x+1.25-1.25+4.5=0

x+1.25-1.25=0-4.5

x+1.25-1.25=-4.5

x+1.25=-4.5+1.25

x+1.25=-3.25

x=-3.25-1.25

x=-4.5

12 tháng 8 2018

\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)

Nhận thấy:  \(\left|2x+1\right|\ge0\);     \(\left|x+y-\frac{1}{2}\right|\ge0\)

=>   \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)

Dấu "=" xảy ra  <=>  \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

đến đây bạn thay x,y tìm đc vào A để tính nhé

9 tháng 9 2016

a) \(\left|x\right|=2,1\)

x= +- 2,1

b) \(\left|x\right|=\frac{3}{4}\left(x< 0\right)\)

x= -3/4

c) \(\left|x\right|=-1\frac{2}{5}\)

\(x\in\varphi\)

d) \(\left|x\right|=0,35\left(x>0\right)\)

\(x=0,35\)

9 tháng 9 2016

a) |x| = 2,1 <=> \(\orbr{\begin{cases}x=2,1\\x=-2,1\end{cases}}\)

b) |x| = 3/4 <=> x = - 3/4 ( do x < 0 )

c) ko tim dc x vi |x| >= 0 voi moi x

d) |x| = 0,35 <=> x = 0,35 ( do x>0 )

17 tháng 7 2018

\(A=\left|x+\frac{2}{3}\right|\)

Ta có: \(\left|x+\frac{2}{3}\right|\ge0\forall x\)

\(A=0\Leftrightarrow\left|x+\frac{2}{3}\right|=0\Leftrightarrow x=-\frac{2}{3}\)

Vậy \(A_{min}=0\Leftrightarrow x=-\frac{2}{3}\)

\(B=\left|x\right|+\frac{1}{2}\)

Ta có: \(\left|x\right|\ge0\forall x\)

\(\Rightarrow\left|x\right|+\frac{1}{2}\ge\frac{1}{2}\forall x\)

\(B=\frac{1}{2}\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)

Vậy \(B_{min}=\frac{1}{2}\Leftrightarrow x=0\)

Câu c,d tương tự

P/S tất cả những bài trên chỉ tìm được min, ko tìm được max. 

17 tháng 7 2018

ma ban oi, cau e va f thi sao

22 tháng 12 2018

\(x^2-4x+1=0\)

( a = 1 ; b = -4 ; c =1 )

\(\Delta=b^2-4ac\) 

\(=\left(-4\right)^2-4.1.1\)

\(=16-4\)

\(=12>0\)

\(\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)

Vì \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+2\sqrt{3}}{2.1}=2+\sqrt{3}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-2\sqrt{3}}{2.1}=2-\sqrt{3}\)

Ta có : \(G=\frac{x^2}{x^4+1}\) 

. Thay \(x_1\) vào ta được : \(G=\frac{\left(2+\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)^4+1}\)

 \(=\frac{4+4\sqrt{3}+3}{\left(4+4\sqrt{3}+3\right)^2+1}\)

\(=\frac{4\sqrt{3}+7}{\left(4\sqrt{3}+7\right)^2+1}\)

\(=\frac{4\sqrt{3}+7}{48+56\sqrt{3}+49+1}\)

\(=\frac{4\sqrt{3}+7}{56\sqrt{3}+98}\)

\(=\frac{4\sqrt{3}+7}{14.\left(4\sqrt{3}+7\right)}\)

\(=\frac{1}{14}\)

.Thay \(x_2\) vào ta được : \(G=\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)^4+1}\)

\(=\frac{4-4\sqrt{3}+3}{\left(4-4\sqrt{3}+3\right)^2+1}\)

\(=\frac{7-4\sqrt{3}}{\left(7-4\sqrt{3}\right)^2+1}\)

\(=\frac{7-4\sqrt{3}}{49-56\sqrt{3}+48+1}\)

\(=\frac{7-4\sqrt{3}}{98-56\sqrt{3}}\)

\(=\frac{7-4\sqrt{3}}{14.\left(7-4\sqrt{3}\right)}=\frac{1}{14}\)

Vậy giá trị của biểu thức là 1/14 

10 tháng 10 2018

x+7/2010+x+6/2011=x+5/2012+x+4/2013

((x+7/2010)-1)+((x+6/2011)-1)=(x+5/2012)-1)+(x+4/2013)-1)

x+2017/2010+x+2017/2011-x+2017/2012-x+2017/2013=0

x+2017(1/2010+1/2011-1/2012-1/2013)=0

x+2017=0(vì 1/2010+1/2011-1/2012-1/2013<0)

x=-2017

vậy.......

tk mk nha bn