Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$a)\dfrac{3{{x}^{2}}+7x-10}{x}=0$
ĐK: $x\ne 0$
$\begin{align}
& Pt\Leftrightarrow 3{{x}^{2}}-3x+10x-10=0 \\
& \Leftrightarrow 3x\left( x-1 \right)+10\left( x-1 \right)=0 \\
& \Leftrightarrow \left( x-1 \right)\left( 3x+10 \right)=0 \\
& \Leftrightarrow \left[ \begin{align}
& x-1=0 \\
& 3x+10=0 \\
\end{align} \right.\Leftrightarrow \left[ \begin{align}
& x=1 \\
& x=-\dfrac{10}{3} \\
\end{align} \right.\left( tm \right) \\
\end{align}$
$b)\dfrac{4x-17}{2{{x}^{2}}+1}=0$
ĐK: $x\in \mathbb{R}$
$Pt\Leftrightarrow 4x-17=0\Rightarrow x=\dfrac{17}{4}\left( tm \right)$
a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2
a) A= \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\)
\(ĐK:3x^2-7x+2\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ne\frac{1}{3}\\x\ne2\end{cases}\left(^∗\right)}\)
=> 3x2 + 5x + 2 =0
<=> 3x2 + 3x + 2x +2 = 0
<=> 3x .( x + 1 ) + 2 .( x + 1 ) =0
<=> ( x + 1 )(3x + 2 ) =0
<=> \(\orbr{\begin{cases}x+1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{-2}{3}\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = -2/3
b) \(B=\frac{2x^2+10x+12}{x^3-4x}=0\left(ĐK:x\ne0;x^2\ne4\Leftrightarrow x\ne0;x\ne\pm2\right)\)
<=> 2x2+ 10x + 12 = 0
<=> x2 + 5x+ 6 =0
<=> ( x + 2 ) ( x + 3 ) =0\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(L\right)\\x=-3\left(t/m\right)\end{cases}}\)
Vậy x = -3
c)\(C=\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) \(ĐK:x^3+2x-5\ne0\left(^∗\right)\)
<=> x3 + x2 -x -1 =0
<=> ( x - 1 )(x2 + 2x + 1 )
<=> ( x-1 ) (x+1)2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(t/m\left(^∗\right)\right)\\x=-1\left(t/m\left(^∗\right)\right)\end{cases}}}\)
Vậy x = { 1 ; -1 }
a) A = \(\frac{3x^2+5x-2}{3x^2-7x+2}=0\) (ĐKXĐ: x khác 1/3, x khác 2)
<=> 3x^2 + 5x - 2 = 0
<=> (3x - 1)(x + 2) = 0
<=> 3x - 1 = 0 hoặc x + 2 = 0
<=> 3x = 1 hoặc x = -2
<=> x = 1/3 (ktm) hoặc x = -2 (tm)
=> x = -2
b) B = \(\frac{2x^2+10x+12}{x^3-4x}=0\) (ĐKXĐ: x khác 0, x khác +-2)
<=> \(\frac{2\left(x^2+5x+6\right)}{x\left(x^2-4\right)}=0\)
<=> \(\frac{2\left(x+2\right)\left(x+3\right)}{x\left(x-2\right)\left(x+2\right)}=0\)
<=> \(\frac{2\left(x+3\right)}{x\left(x-2\right)}=0\)
<=> 2(x + 3) = 0
<=> x + 3 = 0
<=> x = -3
c) C = \(\frac{x^3+x^2-x-1}{x^3+2x-5}=0\) (ĐKXĐ: x khác x^3 + 2x - 5)
<=> \(\frac{x^2\left(x+1\right)-\left(x+1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x^2-1\right)}{x^3+2x-5}=0\)
<=> \(\frac{\left(x+1\right)\left(x-1\right)\left(x+1\right)}{x^3+2x-5}=0\)
<=> (x + 1)(x - 1) = 0
<=> x + 1 = 0 hoặc x - 1 = 0
<=> x = -1 hoặc x = 1
a) \(x^2+x+1=\left(x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\) với mọi \(x\) (đpcm)
b) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)=2\left(\left(x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{1}{4}\right)\)
\(=2\left(\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\)
ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\) với mọi \(x\) (đpcm)
c) \(-9x^2+12x-15=-\left(9x^2-12x+15\right)=-\left(9x^2-2.3.2x+4+11\right)\)
\(=-\left(\left(3x-2\right)^2+11\right)=-\left(3x-2\right)^2-11\)
ta có : \(\left(3x-2\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-\left(3x-2\right)^2-11\le-11< 0\) với mọi \(x\) (đpcm)
d) \(3x-x^2-4=-\left(x^2-3x+4\right)=-\left(\left(x^2-2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2\right)+\dfrac{7}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\) ta có \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi \(x\)
\(\Rightarrow-\left(x-\dfrac{3}{2}\right)^2-\dfrac{7}{4}\le\dfrac{-7}{4}< 0\) với mọi \(x\) (đpcm)
e) \(6x-3x^2-5=-3\left(x^2-2x+\dfrac{5}{3}\right)=-3\left(\left(x^2-2x+1\right)+\dfrac{2}{3}\right)\)
\(=-3\left(\left(x-1\right)^2+\dfrac{2}{3}\right)=-3\left(x-1\right)^2-2\)
ta có \(\left(x-1\right)^2\ge0\) với mọi \(x\) \(\Rightarrow-3\left(x-1\right)^2-2\le-2< 0\) với mọi \(x\) (đpcm)
f, 3x2+4x-4=0
\(\Leftrightarrow\)3x2+6x-2x-4=0
\(\Leftrightarrow\)3x(x+2)-2(x+2)=0
\(\Leftrightarrow\)(x+2)(3x-2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=\frac{2}{3}\end{matrix}\right.\left(tm\right)\)
Vậy pt có tập nghiệm S = \(\left\{-2;\frac{2}{3}\right\}\)
\(\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\\\Leftrightarrow\left(x+1\right)^2=4\left(x-1\right)^2\\\Leftrightarrow \left(x+1\right)^2-4\left(x-1\right)^2=0\\\Leftrightarrow \left(x+1\right)^2-\left(2x-2\right)^2=0\\\Leftrightarrow \left[\left(x+1\right)+\left(2x-2\right)\right]\left[\left(x+1\right)-\left(2x-2\right)\right] =0\\ \Leftrightarrow\left(x+1+2x-2\right)\left(x+1-2x+2\right)=0\\\Leftrightarrow \left(3x-1\right)\left(3-x\right)=0\\\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{3}\\x=3\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{3};3\right\}\)
\(\left(2x+7\right)^2=9\left(x+2\right)^2\\ \Leftrightarrow\left(2x+7\right)^2-9\left(x+2\right)^2=0\\ \Leftrightarrow\left(2x+7\right)^2-\left(3x+6\right)^2=0\\ \Leftrightarrow\left[\left(2x+7\right)+\left(3x+6\right)\right]\left[\left(2x+7\right)-\left(3x+6\right)\right]=0\\ \Leftrightarrow\left(2x+7+3x+6\right)\left(2x+7-3x-6\right)=0\\ \Leftrightarrow\left(5x+13\right)\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+13=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-13}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-13}{5};1\right\}\)
\(4\left(2x+7\right)^2=9\left(x+3\right)^2\\\Leftrightarrow 4\left(2x+7\right)^2-9\left(x+3\right)=0\\ \Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\\\Leftrightarrow \left[\left(4x+14\right)+\left(3x+9\right)\right]\left[\left(4x+14\right)-\left(3x+9\right)\right]=0\\\Leftrightarrow \left(4x+14+3x+9\right)\left(4x+14-3x-9\right)=0\\\Leftrightarrow \left(7x+23\right)\left(x+5\right)=0\\\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right. \)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{-23}{7};-5\right\}\)
Chọn C
C