Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, |2x-1| = |x+7|
+, Với x < -7
=> 1-2x = -x-7
=> x = 8 (ko tm)
+, Với -7 < = x < = 1/2
=> 1-2x = x+7
=> x = -2 (tm)
+, Với x > 1/2
=> 2x-1 = x+7
=> 8 (tm)
Vậy .............
b, |x+4|+|x-7| = 9
Có : |x+4|+|x-7| = |x+4|+|7-x| >= |x+4+7-x| = 11
=> ko tồn tại x tm bài toán
Tk mk nha
A = |\(x\) + 19| + 1980
|\(x\) + 19| ≥ 0 \(\forall\) \(x\)
|\(x\) + 19| + 1980 ≥ 1980 ∀ \(x\)
A ≥ 1980 dấu bằng xảy khi \(x\) + 19 = 0 hay \(x\) = -19
Kết luận A đạt giá trị nhỏ nhất là 1980 khi \(x\) = -19
B = |\(x\) + 20| + |y - 21| + 2020
|\(x\) + 20| ≥ 0 ∀ \(x\); |y - 21| ≥ 0 ∀ y
B = |\(x\) + 20| + |y - 21| + 2020 ≥ 2020
B ≥ 2020 dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+20=0\\y-21=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-20\\y=21\end{matrix}\right.\)
Bmin = 2020 khi (\(x;y\)) = (-20; 21)
Ta có: |x + 1| + |y| = 0
x + 1 = y = 0
x + 1 = 0
=> x = 0 - 1
=> x = -1
Vậy x = -1 và y = 0
Ta có: |x + 1| + |y| = 0
Vì giá trị tuyệt đối của 1 số luôn luôn nhận giá trị dương .
Nên x + 1 = y = 0
Vì x + 1 = 0
=> x = 0 - 1
=> x = -1
Vậy x = -1 và y = 0
Lời giải:
$|x+1|+|2x-1|=0$
Vì $|x+1|\geq 0; |2x-1|\geq 0$ với mọi $x$ (theo tính chất trị tuyệt đối)
$\Rightarrow$ để tổng bằng $0$ thì $|x+1|=|2x-1|=0$
$\Rightarrow x=-1=\frac{1}{2}$ (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề.