\(x^2+11x+9\)

Giá trị lớn nhất của 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2016

Câu: 1.    Ta gọi GTNN của biểu thức là A

         ta có A=x2+11x+9
                    = \(x^2+2.\frac{11}{2}.x+\frac{121}{4}-\frac{85}{4}\)
                    = \(\left(x+\frac{11}{2}\right)^2-\frac{85}{4}\)

    Vậy \(A_{min}=\frac{-85}{4}\) khi \(x=\frac{-11}{2}\)
 

2 tháng 1 2016

x-3x2+12= -3(x2-1/3x-4)= -3(x2-2*1/6x+1/36-1/36-4)= -3((x-1/3)2-145/36)= 145/12-3(x-1/3)2

vậy GTLN của bt trên là 145/12

18 tháng 12 2017

Với \(k\in R\)ta có:

\(P+k=\frac{\left(kx^2-8x+k+6\right)}{\left(x^2+1\right)}\)

Với k = -8 thì:

\(P-8=\frac{\left[-2.\left(2x+1\right)^2\right]}{\left(x^2+1\right)}\le0\)

\(\Rightarrow P\le8\)

\(\Rightarrow Max_P=8\)khi \(x=-\frac{1}{2}\)

\(P+2=\frac{\left[2.\left(x-2\right)^2\right]}{x^2+1}\ge0\)

\(\Rightarrow P\ge2\)

\(\Rightarrow Min_A=-2\)khi \(x=2\)

18 tháng 12 2017

\(P=\frac{6x-8}{x^2+1}\)

\(\Leftrightarrow Px^2+P=6x-8\)

\(\Leftrightarrow Px^2+P-6x+8=0\)

\(\Leftrightarrow Px^2-6x+\left(P+8\right)=0\)(1)

Để PT (1) có nghiệm \(\Leftrightarrow\left(-6\right)^2-4P\left(P+8\right)\ge0\Leftrightarrow36-4P^2-32P\ge0\)

\(\Leftrightarrow9-P^2-8P\ge0\Leftrightarrow\left(-P-9\right)\left(P-1\right)\ge0\Leftrightarrow-9\le P\le1\)

Vậy P có giá trị nhỏ nhất là - 9 \(\Leftrightarrow-9x^2-6x-1=0\Rightarrow x=-\frac{1}{3}\)\

Vậy P có giá trị lớn nhất là 1 \(x^2-6x+9=0\Rightarrow x=3\)

25 tháng 8 2017

Ta có : x2 + 100x + 100

= x2 + 2.50.x + 2500 - 2400

= (x + 50)2 - 2400

Vì \(\left(x+50\right)^2\ge0\forall x\)

Nên : (x + 50)2 - 2400 \(\ge-2400\forall x\)

Vậy Amin = -2400 khi x = -50

21 tháng 1 2022

Ta có : \(-2x^2+x+5\)

\(-2\left(x^2-\dfrac{x}{2}-\dfrac{5}{2}\right)\)

\(-2\left(x^2-2.\dfrac{x}{4}+\dfrac{1}{4^2}-\dfrac{1}{4^2}-\dfrac{5}{2}\right)\)

\(-2\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{41}{16}\right]\)

\(-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{41}{8}\le\dfrac{41}{8}\) Vì  \(-2\left(x-\dfrac{1}{2}\right)^2\le0\)

Vậy GTLN của đa thức là \(\dfrac{41}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

17 tháng 8 2016

a) Đặt \(t=\frac{1}{x}\) , ta có : \(A=t^2-4t+5=\left(t^2-4t+4\right)+1=\left(t-2\right)^2+1\ge1\)

=> Min A = 1 <=> t = 2 <=> x = 1/2

b) Đặt \(z=\frac{1}{y}\) , ta có ; \(B=-9z^2-18z+19=-9\left(z^2+2z+1\right)+28=-9\left(z+1\right)^2+28\le28\)

=> Max B = 28 <=> z = -1 <=> y = -1