Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ 76; 104
2/ 2,3
3/ 10
4/ a+b = 34,4
5/ x+y= 0,7
6/ a.b= 17,28
7/ -2,5
8/ 2
9/ -1,7
10/ 11
Violympic toán vòng 5 đúng không? Mk làm hết rồi
Câu 1: Theo bài ta có: \(\frac{a}{-2,4}=\frac{b}{3,8}\) và 2a + b = -6
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{-2,4}=\frac{b}{3,8}=\frac{2a}{-4,8}=\frac{b}{3,8}=\frac{-6}{-4,8+3,8}=\frac{-6}{-1}=6\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=6.\left(-2,4\right)\\b=6.3,8\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=-14,4\\b=22,8\end{array}\right.\)
=> a + b = -14,4 + 22,8 = 8,4
Câu 2: Theo bài ta có: \(\frac{a}{3}=\frac{b}{5}\) và 3a - b =17,2
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{3a}{9}=\frac{b}{5}=\frac{3a-b}{9-5}=\frac{17,2}{4}=4,3\)
\(\Rightarrow\left[\begin{array}{nghiempt}a=4,3.3\\b=4,3.5\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=12,9\\b=21,5\end{array}\right.\)
=> a + b = 12,9 + 21,5 = 34,4
Câu 6: Theo bài ta có: \(\frac{a}{3}=\frac{b}{4}\) => \(\frac{a^2}{9}=\frac{b^2}{16}\)
và a2 + b3 = 36
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\) = 1,44
\(\Rightarrow\left[\begin{array}{nghiempt}a^2=12,96\\b^2=23,04\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}a=\sqrt{12,96}=3,6;a=-\sqrt{12,96}=-3,6\\b=\sqrt{23,04}=4,8;b=-\sqrt{23,04}=-4,8\end{array}\right.\)
\(\Rightarrow\) a . b = 3,6 . 4,8 = -3,6 . (-4,8) = 17,28
Vậy giá trị a . b = 17,28
a)Ta có : B = (1-\(\frac{z}{x}\))(1-\(\frac{x}{y}\))(1+\(\frac{y}{z}\))
=> B=\(\frac{x-z}{x}\).\(\frac{y-x}{y}\).\(\frac{z+y}{z}\)
Từ : x-y-z = 0
=>x – z = y; y – x = – z và y + z = x
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}=\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
\(=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{16+9+4}=0\)
\(\left\{\begin{matrix}\frac{12x-8y}{16}=0\\\frac{6z-12x}{9}=0\\\frac{8y-6z}{4}=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x-8y=0\\6z-12x=0\\8y-6z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{12x}{24}=\frac{8y}{24}=\frac{6z}{24}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\left(đpcm\right)\)
Ta có :
\(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2=2^2=4\)
\(\Leftrightarrow x^2+y^2\ge2\)
Có: \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=2\)
\(Min=2\) khi \(x=y=1\)
A=x2−4x+1=(x−2)2−3≥−3A=x2−4x+1=(x−2)2−3≥−3
⇒Amin=−3⇒Amin=−3 khi x=2x=2
B=4x2+4x+11=(2x+1)2+10≥10B=4x2+4x+11=(2x+1)2+10≥10
⇒Bmin=10⇒Bmin=10 khi x=−12x=−12
C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)C=(x−1)(x+6)(x+2)(x+3)=(x2+5x−6)(x2+5x+6)
=(x2+5x)2−36≥−36=(x2+5x)2−36≥−36
⇒Cmin=−36⇒Cmin=−36 khi [x=0x=−5[x=0x=−5
D=−x2−8x−16+21=21−(x+4)2≤21D=−x2−8x−16+21=21−(x+4)2≤21
⇒Cmax=21⇒Cmax=21 khi x=−4x=−4
E=−x2+4x−4+5=5−(x−2)2≤5E=−x2+4x−4+5=5−(x−2)2≤5
⇒Emax=5⇒Emax=5 khi x=2
Từ \(x^2+2xy+7\left(x+y\right)+7y^2+10=0\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+6y^2+10=0\) ( * )
\(S=x+y+1\Rightarrow x+y=S-1\)
( * ) \(\left(S-1\right)^2+7.\left(S-1\right)+6y^2+10=0\)
\(\Rightarrow S^2+5S+4=-6y^2\le0\) với mọi y \(\Rightarrow S^2+5S+4\le0\)
=> (S + 4)(S + 1) ≤ 0 => S + 4 và S + 1 trái dấu
Giải 2 trường hợp => -4 ≤ S ≤ -1
=> GTNN của S bằng -4 khi y = 0 và x = -5
GTLN của S bằng -1 khi y = 0 và x = -2
Ta có: x2>=0 với mọi x
=>x2+3 >=3 với mọi x
=>|x2+3|>=3 với mọi x
Ta có: y2>=0 với mọi y
=>y2+6 >=6 với mọi y
=>|y2+6|>=6 với mọi y
Do đó |x2+3|+|y2+6|>=3+6 với mọi x,y
=>|x2+3|+|y2+6|-12,5>=9-12,5 với mọi x,y
=>|x2+3|+|y2+6|-12,5>=-3,5 với mọi x,y
Vậy giá trị nhỏ nhất của biểu thức trên là -3,5
KHÔNG NÊN ĐĂNG CÁC CÂU HỎI LINH TINH BẠN NHÉ