Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2-2x\cdot\frac{1}{2}+\frac{1}{4}+y^2+6y+9+\frac{3}{4}.\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y\)
GTNN của M = 3/4 khi x = 1/2 ; y = -3.
Ta có : M = x2 + y2 - x + 6y + 10
= (x2 - x + \(\frac{1}{4}\)) + (y2 + 6y + 9) + \(\frac{3}{4}\)
= (x - \(\frac{1}{2}\) )2 + (y + 3)2 + \(\frac{3}{4}\)
Mà ; (x - \(\frac{1}{2}\) )2 và (y + 3)2 \(\ge0\forall x\)
Nên : (x - \(\frac{1}{2}\) )2 + (y + 3)2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Vậy Mmin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\) và y = -3
Ta có : \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-9-\frac{1}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\) nê \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của M là 3/4 . Dấu bằng xảy ra khi x = 1/2 và y = -3
\(x^2+2xy+6x+6y+2y^2+8=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(6x+6y\right)+9+y^2-1=0\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)
\(\left(x+y+3\right)^2=1-y^2\)
Do \(VP=1-y^2\le1\forall x\) \(\Rightarrow VT=\left(x+y+3\right)^2\le1\)
\(\Leftrightarrow-1\le x+y+3\le1\)
\(\Leftrightarrow-1+2013\le x+y+3+2013\le1+2013\)
\(\Leftrightarrow2012\le x+y+2016\le2014\) hay \(2012\le B\le2014\)
B đạt MIN là 2012 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-4\end{cases}}}\)
B đạt MAX là 2014 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}}\)
\(P=x^2+y^2-2x+6y+19=x^2-2x+1+y^2+6y+9+9=\left(x-1\right)^2+\left(y+3\right)^2+9\)
Vì \(\left(x-1\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\)
Nên \(\left(x-1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2+9\ge9\)
Vậy giá trị nhỏ nhất của P là 9 tại
\(x-1=0\Rightarrow x=1\)
và \(y+3=0\Rightarrow y=-3\)
mk giải lun nha :
b)\(x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\left(y^2.2-2...\right)\)
nhận xét :\(\frac{x-1^2}{2}>=0\)(do bình phương của 1 số lun k âm)
\(\left(y-3^{ }\right)^2>=0\)(do bình phương của 1 số lun k âm )
\(=>\frac{x-1^2}{2}+\left(y-3\right)^2>=0\)
\(=>\frac{x-1^2}{2}+\left(y-3\right)^2+\frac{3}{4}>=\frac{3}{4}\)
hay B \(>=\frac{3}{4}\)DẤU = XẢY RA <=>X=1/2,Y=3
VẬY B MIN =3/4 <=>X=1/2,Y=3
MK CHỈ LÀM ĐƯỢC CÂU B THUI
a)Đặt \(A=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) (vì \(\left(x-\frac{3}{2}\right)^2\ge0\) với mọi x)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)
Vậy Min A= \(-\frac{9}{2}\) tại x= \(\frac{3}{2}\)
b) Đặt \(B=x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\) với mọi x, y)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2};y=-3\)
Vậy Min B= \(\frac{3}{4}\) tại x= \(\frac{1}{2}\); y= -3.