K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

\(M=x^2-2x\cdot\frac{1}{2}+\frac{1}{4}+y^2+6y+9+\frac{3}{4}.\)

\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y\)

GTNN của M = 3/4 khi x = 1/2 ; y = -3.

19 tháng 7 2017

Ta có : M = x2 + y2 - x + 6y + 10

= (x2 - x + \(\frac{1}{4}\)) + (y2 + 6y + 9) + \(\frac{3}{4}\)

= (x - \(\frac{1}{2}\) )2 + (y + 3)\(\frac{3}{4}\)

Mà ; (x -  \(\frac{1}{2}\) )2 và (y + 3)\(\ge0\forall x\)

Nên :  (x - \(\frac{1}{2}\) )2 + (y + 3)\(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)

Vậy Mmin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\) và y = -3

19 tháng 7 2017

Ta có :  \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-9-\frac{1}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

Vì  \(\left(x-\frac{1}{2}\right)^2\ge0\)  và \(\left(y+3\right)^2\ge0\) nê \(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy GTNN của M là 3/4 . Dấu bằng xảy ra khi x = 1/2 và y = -3

21 tháng 12 2017

\(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(6x+6y\right)+9+y^2-1=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9=1-y^2\)

\(\left(x+y+3\right)^2=1-y^2\)

Do \(VP=1-y^2\le1\forall x\) \(\Rightarrow VT=\left(x+y+3\right)^2\le1\)

\(\Leftrightarrow-1\le x+y+3\le1\)

\(\Leftrightarrow-1+2013\le x+y+3+2013\le1+2013\)

\(\Leftrightarrow2012\le x+y+2016\le2014\) hay \(2012\le B\le2014\)

B đạt MIN là 2012 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}y=0\\x=-4\end{cases}}}\)

B đạt MAX là 2014 \(\Leftrightarrow\hept{\begin{cases}y=0\\x+y+3=1\end{cases}\Leftrightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}}\)

10 tháng 11 2015

\(P=x^2+y^2-2x+6y+19=x^2-2x+1+y^2+6y+9+9=\left(x-1\right)^2+\left(y+3\right)^2+9\)

Vì \(\left(x-1\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\)

Nên  \(\left(x-1\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2+9\ge9\)

Vậy  giá trị nhỏ nhất của P là 9 tại

\(x-1=0\Rightarrow x=1\)

và \(y+3=0\Rightarrow y=-3\)

10 tháng 6 2017

mk giải lun nha :

b)\(x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}.x+\frac{1}{4}\right)+\left(y^2.2-2...\right)\)

nhận xét :\(\frac{x-1^2}{2}>=0\)(do bình phương của 1 số lun k âm)

\(\left(y-3^{ }\right)^2>=0\)(do bình phương của 1 số lun k âm )

\(=>\frac{x-1^2}{2}+\left(y-3\right)^2>=0\)

\(=>\frac{x-1^2}{2}+\left(y-3\right)^2+\frac{3}{4}>=\frac{3}{4}\)

hay B \(>=\frac{3}{4}\)DẤU = XẢY RA <=>X=1/2,Y=3

VẬY B MIN =3/4 <=>X=1/2,Y=3

MK CHỈ LÀM ĐƯỢC CÂU B THUI 

10 tháng 7 2015

a)Đặt  \(A=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\right)\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) (vì   \(\left(x-\frac{3}{2}\right)^2\ge0\)  với mọi x)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{3}{2}\)

Vậy Min A= \(-\frac{9}{2}\) tại x= \(\frac{3}{2}\)

b) Đặt  \(B=x^2+y^2-x+6y+10=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( vì \(\left(x-\frac{1}{2}\right)^2\ge0;\left(y+3\right)^2\ge0\) với mọi x, y)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2};y=-3\)

Vậy Min B= \(\frac{3}{4}\) tại x= \(\frac{1}{2}\); y= -3.