K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?

19 tháng 10 2021

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{2}{\sqrt{x}-2}-\dfrac{4\sqrt{x}}{x-4}\)

\(=\dfrac{x-2\sqrt{x}+2\sqrt{x}+4-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)

30 tháng 5 2022

Điều kiện xác định: \(x\ge0;x\ne9\)

1/ \(P=\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-3}{3-\sqrt{x}}-\dfrac{3\left(3\sqrt{x}-5\right)}{x-2\sqrt{x}-3}\)

\(=\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}+\dfrac{2\sqrt{x}-3}{\sqrt{x}-3}-\dfrac{9\sqrt{x}-15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3x-7\sqrt{x}-6+2x-\sqrt{x}-3-9\sqrt{x}+15}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\\ =\dfrac{5x-17\sqrt{x}+6}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(5\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}=\dfrac{5\sqrt{x}-2}{\sqrt{x}+1}\)

b) Khi \(x=4+2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

Ta có \(P=\dfrac{5\left(\sqrt{3}+1\right)-2}{\sqrt{3}+1+1}=\dfrac{5\sqrt{3}+3}{\sqrt{3}+2}\)

c) \(P=\dfrac{5\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{5\left(\sqrt{x}+1\right)-7}{\sqrt{x}+1}=5-\dfrac{7}{\sqrt{x}+1}\)

Ta có \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow P\ge5-\dfrac{7}{1}=-2\)

Dấu = xảy ra \(\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)

Vậy \(P_{min}=-2\) đạt được khi \(x=0\)

21 tháng 11 2015

\(A=\sqrt{-x^2+2x+8}-\sqrt{-x^2+x+2}=\sqrt{\left(4-x\right)\left(x+2\right)}-\sqrt{\left(2-x\right)\left(x+1\right)}\)

Áp dụng BĐT \(\left(ab-cd\right)^2\ge\left(a^2-c^2\right)\left(b^2-d^2\right)\) ta có  :

\(A^2\ge\left(4-x-2+x\right)\left(x+2-x-1\right)=2\)

=> \(A\ge\sqrt{2}\)

Vậy MInA = ... tại  ( 4- x )( x + 1 ) = ( 2 -x )( x + 2 ) 

 

21 tháng 11 2015

Toàn ra bài ....

Chịu .... khi khác rảnh thì làm nhé..

NV
13 tháng 8 2021

\(C=\dfrac{20\sqrt{x}-16\sqrt{x}-8}{2\sqrt{x}+1}=\dfrac{20\sqrt{x}-8\left(2\sqrt{x}+1\right)}{2\sqrt{x}+1}=\dfrac{20\sqrt{x}}{2\sqrt{x}+1}-8\)

Do \(\left\{{}\begin{matrix}20\sqrt{x}\ge0\\2\sqrt{x}+1>0\end{matrix}\right.\) ; \(\forall x\Rightarrow\dfrac{20\sqrt{x}}{2\sqrt{x}+1}\ge0\) ; \(\forall x\)

\(\Rightarrow C\ge-8\)

\(C_{min}=-8\) khi \(x=0\)

6 tháng 8 2018

\(y=\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\) Điều kiện: \(x\ge2\)

\(\Rightarrow2y=2.\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+2.\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\)

\(=\sqrt{x^2+4\sqrt{x^2-4}}+\sqrt{x^2-4\sqrt{x^2-4}}\)

\(=\sqrt{x^2-4+4\sqrt{x^2-4}+4}+\sqrt{x^2-4-4\sqrt{x^2-4}+4}\)

\(=\sqrt{\left(\sqrt{x^2-4}+2\right)^2}+\sqrt{\left(\sqrt{x^2-4}-2\right)^2}\)

\(=\left|\sqrt{x^2-4}+2\right|+\left|\sqrt{x^2-4}-2\right|\)

\(=\sqrt{x^2-4}+2+\left|\sqrt{x^2-4}-2\right|\)(1)

TH1: \(\sqrt{x^2-4}-2\ge0\Rightarrow\sqrt{x^2-4}\ge2\Rightarrow x^2-4\ge4\Rightarrow x\ge2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2+\sqrt{x^2-4}-2=2\sqrt{x^2-4}\)

Do \(x\ge2\sqrt{2}\Rightarrow2\sqrt{x^2-4}\ge2\sqrt{\left(2\sqrt{2}\right)^2-4}=4\)

TH2:  \(\sqrt{x^2-4}-2< 0\Rightarrow\sqrt{x^2-4}< 2\Rightarrow x^2-4< 4\Rightarrow x^2< 8\Rightarrow2\le x< 2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2-\sqrt{x^2-4}+2=4\)

Vậy GTNN của y bằng 4.

Dấu "=" xảy ra khi \(2\le x\le2\sqrt{2}\)