\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\) ?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)

\(\Leftrightarrow\)\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+\frac{8x}{8}\right)+9\)

\(\Leftrightarrow\)\(P=\frac{x^2}{x+4}.\left(\frac{\left(x+4\right)^2}{x}\right)+9\)(Không viết ngoặc vuông được nên để ngoặc tròn luôn, đừng ném đá, em không cần đá xây nhà)

\(\Leftrightarrow P=x\left(x+4\right)+9\)

\(\Leftrightarrow P=x^2+4x+9\)

\(\Leftrightarrow P=\left(x^2+4x+4\right)+5\)

\(\Leftrightarrow P=\left(x+2\right)^2+5\)

\(\Rightarrow Min_P=5\) tại \(x=-2\)

22 tháng 2 2017

5, mới test casio, để giải tự luận sau

14 tháng 2 2017

Dễ mà bạn:\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9\)

\(P=\frac{x^2}{x+4}\left(\frac{x^2+8x+16}{x}\right)+9\)

\(P=\frac{x^2}{x+4}.\frac{\left(x+4\right)^2}{x}+9\)

\(P=x\left(x+4\right)+9=x^2+4x+9\)

\(P=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)

Dấu "=" xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Vậy minP=5 khi x=-2

14 tháng 2 2017

ĐK: x khác 0 và x khác -4

\(P=\frac{x^2}{x+4}\left(\frac{x^2+16}{x}+8\right)+9=\frac{x^2}{x+4}\frac{\left(x+4\right)^2}{x}+9=x\left(x+4\right)+9=x^2+4x+4+5=\left(x+2\right)^2+5\ge5\)

GTNN P=5 khi x=-2

Tự tìm Đkxđ nha.

1/(3y^2 - 10y +3) = 6y/(9y^2 - 1) + 2/(1 - 3y)

=>1/(3y^2 -9y -y +3)=6y/(3y- 1)(3y+ 1)- 2(3y+ 1)/(3y - 1)(3y+ 1)

=>1/(y- 3)(3y -1)=-1/(3y -1)(3y +1)

=>(3y+ 1)/(y- 3)(3y -1)(3y+ 1)=(y -3)/(3y- 1)(3y +1)

=>3y+ 1= y- 3

Đến đây tự làm nha

21 tháng 2 2019

a)ĐKXĐ:\(\hept{\begin{cases}y\ne3\\y\ne\frac{1}{3}\\y\ne-\frac{1}{3}\end{cases}}\)

\(\frac{1}{3y^2-10y+3}=\frac{6y}{9y^2-1}+\frac{2}{1-3y}\)

\(\Leftrightarrow\frac{1}{\left(y-3\right)\left(3y-1\right)}=\frac{6y}{\left(3y-1\right)\left(3y+1\right)}-\frac{2}{3y-1}\)

\(\Leftrightarrow\frac{3y+1}{\left(y-3\right)\left(3y-1\right)\left(3y+1\right)}=\frac{6y\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}-\frac{2\left(3y+1\right)\left(y-3\right)}{\left(3y-1\right)\left(3y+1\right)\left(y-3\right)}\)

\(\Rightarrow6y^2-18y-2\left(3y^2-9y+y-3\right)-3y-1=0\)

\(\Leftrightarrow6y^2-18y-6y^2+18y-2y+6-3y-1=0\)

\(\Leftrightarrow5-5y=0\)

\(\Leftrightarrow5y=5\Leftrightarrow y=1\)(t/m ĐKXĐ)

Vậy....

Ta có : \(A=\frac{x^2+25x+144}{x}=x+\frac{144}{x}+25\)

Các số dương \(x\)và \(\frac{144}{x}\)Có tích ko đổi nên tổng nhỏ nhất khi và chỉ khi \(x=\frac{144}{x}\)

\(\Rightarrow x=12\)

Vậy \(Min\)\(A=49\Leftrightarrow x=12\)

18 tháng 8 2019

Ta có: 

\(A=\frac{\left(x+16\right)\left(x+19\right)}{x}\)

\(=\frac{x^2+25x+144}{x}=\frac{\left(x+12,5\right)^2-12,25}{x}\)

\(=\frac{\left(x+12,5\right)^2}{x}-\frac{12,25}{x}\ge\frac{-12,5}{x}\forall x>0\)

Đến đây dễ rồi bạn tự làm nốt !

27 tháng 10 2019

a) Theo mình thì chỉ min thôi nhé!

\(A=\frac{8x^2-1}{4x^2+1}+1+11=\frac{12x^2}{4x^2+1}+11\ge11\)

b)Bạn rút gọn lại giùm mìn, lười quy đồng lắm:(

2 tháng 8 2020

\(B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right):\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(< =>B=\left(\frac{x-4}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}\right):\left(\frac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\frac{x.x}{x\left(x-2\right)}\right)\)

\(< =>B=\left(\frac{x-4+2x}{x\left(x-2\right)}\right):\left(\frac{x^2-4}{x\left(x-2\right)}+\frac{x^2}{x\left(x-2\right)}\right)\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}:\frac{x^2-4+x^2}{x\left(x-2\right)}\)

\(< =>B=\frac{3x-4}{x\left(x-2\right)}.\frac{x\left(x-2\right)}{2x^2-4}\)

\(< =>B=\frac{3x-4}{2x^2-4}\)

\(b,\)Với \(x=-2\)thì

 \(B=\frac{3\left(-2\right)-4}{2\left(-2\right)^2-4}=\frac{-6-4}{8-4}=-\frac{10}{4}=-\frac{5}{2}\)

2 tháng 8 2020

\(ĐKXĐ:x\ne2;x\ne0\)

a

\(B=\left[\frac{x-4}{x\left(x-2\right)}+\frac{2}{x-2}\right]:\left(\frac{x+2}{x}-\frac{x}{x-2}\right)\)

\(=\frac{x-4+2x}{x\left(x-2\right)}:\frac{\left(x+2\right)\left(x-2\right)-x^2}{x\left(x-2\right)}\)

\(=\frac{3x-4}{x^2-4-x^2}=-\frac{3x-4}{4}\)

b

\(B=-\frac{3x-4}{4}=-\frac{3\cdot\left(-2\right)-4}{4}=\frac{5}{2}\)

c

\(\left|B\right|-2x=5\Leftrightarrow\left|B\right|=5+2x\)

\(B=-\frac{3x-4}{4}\Leftrightarrow-\frac{3x-4}{4}\ge0\Leftrightarrow x\le\frac{4}{3}\)

\(B=\frac{3x-4}{4}\Leftrightarrow x>\frac{4}{3}\)

Xét các trường hợp của x thì ra nghiệm bạn nhé

d

\(\left(2-x\right)B=-\frac{\left(2-x\right)\left(3x-4\right)}{4}\)

Để ( 2 - x ).B đạt giá trị nhỏ nhất thì ( 2 - x ) ( 3x - 4 ) đạt giá trị lớn nhất

Casio sẽ giúp chúng ta phần này

e

Để B là số nguyên âm lớn nhất hay \(B=-1\Leftrightarrow-\frac{3x-4}{4}=-1\Leftrightarrow x=\frac{8}{3}\)

g

\(\left|B\right|+3< 2x-1\)

Làm hệt như câu c nhé :D