Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Y=4x^2+4x-5=4x^2+4x+1-6=\left(2x+1\right)^2-6\)
Vì: \(\left(2x+1\right)^2\ge0\forall x\)nên \(Y\ge-6\forall x\)
Vậy, GTNN của Y bằng -6 khi x=-1/2.
\(4x^2+4x-5=\left(4x^2+4x+1\right)-6\)
\(=\left[\left(2x\right)^2+2.2x+1^2\right]-6=\left(2x+1\right)^2-6\ge-6\) với mọi x
dấu "=" xảy ra <=> \(\left(2x+1\right)^2=0\) <=> x=-1/2
Vậy...............
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
ta có \(A=2x^2-4x+2-7=2\left(x^2-2x+1\right)-7=2\left(x-1\right)^2-7\)
vì \(2\left(x-1\right)^2\ge0\Rightarrow A\ge-7\)
dấu = xảy ra <=> x=1
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
2x2+y2+2xy+2y+4x+5
=x2+(2xy+2y)+y2+x2+4x+5
=(x2+2x+1)+2y(x+1)+y2+x2+4x-2x+5-1
=(x+1)2+2y(x+1)+y2+x2+2x+1+3
=(x+1+y)2+(x+1)2+3>(=)3
dấu bằng xảy ra khi x+1+y=x+1=0
=>x=-1;y=0
Vậy Min A=3 khi x=-1;y=0
=4x2 - 2*2*x*5 +25 +15
=(2x- 5)2+15
Ta có (2x - 5)2 < hoac= 0 => (2x -5)2+15 < hoac= 15
Để bt có giá trị nhỏ nhất thì 2x -5=0
=>x = 5/2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
có \(A=-\left[\left(2x\right)^2-2.2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2-5\right]\)
\(=-\left[\left(2x-\frac{1}{2}\right)^2-\frac{21}{4}\right]=-\left(2x-\frac{1}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
Vậy Min A = \(\frac{21}{4}\) khi đó \(-\left(2x-\frac{1}{2}\right)^2=0\Rightarrow\left(2x-\frac{1}{2}\right)^2=0\Rightarrow2x-\frac{1}{2}=0\Rightarrow2x=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)