Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|2,5-x\right|\ge0\) nên giá trị nhỏ nhất của \(\left|2,5-x\right|\) là 0 => \(Min_P=3,7+0=3,7\)
\(A=\left|3,7-x\right|+2,5\ge2,5\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|3,7-x\right|=0\)
\(\Leftrightarrow\)\(x=3,7\)
Vậy GTNN củâ \(A\) là \(2,5\) khi \(x=3,7\)
Chúc bạn học tốt ~
Vì \(\left|3,7-x\right|\ge0\forall x\in Q\)
\(\Rightarrow\left|3,7-x\right|+2,5\ge0+2,5\)
\(\Leftrightarrow A\ge2,5\)
Do đó \(A\)nhận được giá trị nhỏ nhất \(=2,5\)khi \(\left|3,7-x\right|=0\)
\(\Rightarrow3,7-x=0\Leftrightarrow x=3,7\)
Vậy \(Amin=2,5\)khi \(x=3,7\)
Ta có\(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+1\right|\ge0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\)có GTNN khi \(\hept{\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2-\left|2y+1\right|-2,5\)có GTNN là \(\frac{1}{3}\cdot0+0-2,5=-2,5\)
Vậy GTNN của biểu thức trên là -2,5
Vì: \(\begin{cases}\frac{1}{3}\left(x-\frac{2}{5}\right)^2\ge0\\\left|2y+2\right|\ge0\end{cases}\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
Vậy GTNN của C là -2,5 khi \(\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)