Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(x-3\right)\left(x+5\right)+20\)
\(\Leftrightarrow A=x^2+5x-3x-15+20\)
\(\Leftrightarrow A=x^2+2x+5\)
\(\Leftrightarrow A=x^2+2x+1+4\)
\(\Leftrightarrow A=\left(x+1\right)^2+4\ge4\)
GTNN của A = 4
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ..........................
Câu 2:
\(A=3\left(2x+9\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=-9/2
Câu 9:
=>(x-30)^2=0
=>x-30=0
=>x=30
Câu 10:
\(=2x^2+6x-4x-12-2x^2-2x=-12\)
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)
Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2-3x+5\)
\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\("="\Leftrightarrow x=5\Rightarrow x=0;5\)
c) \(C=4x-x^2+3\)
\("="\Leftrightarrow x=7\Rightarrow x=2;7\)
d) \(D=x^4+x^2+2\)
\("="\Leftrightarrow x=2\Rightarrow x=0;2\)
\(C=4x^2+3+4x\)
\(C=\left[\left(2x\right)^2+2.2x+1\right]+2\)
\(C=\left(2x+1\right)^2+2\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+2\ge2\forall x\)
\(C=2\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy \(C=2\Leftrightarrow x=-\frac{1}{2}\)
a_ \(B=\left(x-3\right)^2+\left(x-1\right)^2\ge0\)
\(MinB=0\Rightarrow\hept{\begin{cases}x-3=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=1\end{cases}}\)
b) \(C=x^2+4xy+5y^2-2y\)
\(=\left(x+2y\right)^2+y^2-2y\)
\(=\left(x+2y\right)^2+y^2-2y\ge-2y\)
\(MinC=-2y\Leftrightarrow\hept{\begin{cases}x+2y=0\\y=0\end{cases}\Rightarrow x=y=0}\)
D=(x-1)(x+5)(x-3)(x+7)
=(x2+4x-5)(x2+4x-21)
=(x2+4x-5)2-16(x2+4x-5)
=[(x2+4x-5)2-16(x2+4x-5)+64]-64>=-64
Ta có :
\(M=\left|x+3\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|\)
Áp dụng BĐT :
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow M\ge\left|x+3+5-x\right|=8\)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x+3\ge0\\5-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-3\\x\le5\end{matrix}\right.\)
Vậy GTNN của \(M=8\) xảy ra khi \(-3\le x\le5\)
x=8