K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NS
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
19 tháng 3 2017
\(A=y^2-2y\left(x-1\right)+\left(x-1\right)^2-\left(x-1\right)^2+2x^2+4x+5\)
\(A=\left(y-x+1\right)^2-x^2+2x-1+2x^2+4x+5\)
\(A=\left(y-x+1\right)^2+x^2+6x+9-5\)
\(A=\left(y-x+1\right)^2+\left(x+3\right)^2-5\ge-5\)
Vậy Amin là -5 \(\Leftrightarrow\left\{{}\begin{matrix}\left(y-x+1\right)^2=0\\\left(x+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-4\end{matrix}\right.\)
19 tháng 3 2017
ta có : A=2x2 + y2-2xy +4x+2y+5
= (x2+y2+2y+1-2x-2xy)+(x2+6x
+9)-5
= (x-y-1)2+(x+3)2-5>=-5
Vậy Min A=-5 \(\Leftrightarrow\)x=-3; y=-4
LM
1
PA
21 tháng 2 2017
Câu 1:Hệ số của trong khai triển của là
(Nhập kết quả dưới dạng số thập phân gọn nhất).
(Nhập kết quả dưới dạng số thập phân gọn nhất).
\(\left(\frac{1}{2}x-3\right)^3\)
\(=\frac{1}{8}x^3-2,25x^2+13,5x-27\)
ĐS: 13,5
Câu 2:Với mọi giá trị của , giá trị của biểu thức bằng
\(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3+27-8x^3+2\)
= 29
ĐS: 29
Câu 3:Hệ số của trong khai triển của là .
\(\left(2x^2+3y\right)^3\)
\(=8x^6+36x^4y+54x^2y^2+27y^2\)
ĐS: 54
Câu 4:Với , giá trị của biểu thức bằng .
\(x^3-y^3-3xy\times1\)
\(=x^3-y^3-3xy\left(x-y\right)\)
\(=x^3-3x^2y+3xy^2-y^3\)
\(=\left(x-y\right)^3\)
= 13
= 1
ĐS: 1
Câu 5:Với , giá trị của biểu thức bằng
\(x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
= 32 - 4 . 3 + 1
= - 2
ĐS: - 2
Câu 6:Giá trị nhỏ nhất của biểu thức là
\(4x^2+4x+11\)
= 4x2 + 4x + 1 + 11
= (2x + 1)2 + 11 \(\ge\) 11
ĐS: 11
Câu 7:Cho và . Khi đó bằng
(x - y)2 = 52
<=> x2 - 2xy + y2 = 25
<=> 2xy = 15 - 25
<=> 2xy = - 10
<=> xy = - 10 : 2
<=> xy = - 5
x3 - y3
= (x - y)(x2 + xy + y2)
= 5 . (15 - 5)
= 50
ĐS: 50
Câu 8:Giá trị lớn nhất của biểu thức là
Q = 5 - x2 + 2x - 4y2 - 4y
= 7 - x2 + 2x - 1 - 4y2 - 4y - 1
= 7 - (x - 1)2 - (2y + 1)2 \(\ge\) 7
Câu 9:Giá trị của x thỏa mãn là
(x + 3)2 - x2 + 9 = 0
<=> (x + 3)2 - (x - 3)(x + 3) = 0
<=> (x + 3)(x + 3 - x + 3) = 0
<=> 6(x + 3) = 0
<=> x + 3 = 0
<=> x = - 3
ĐS: - 3
Câu 10:Giá trị nhỏ nhất của biểu thức là
x2 - 4x + 4y2 + 12y + 13
= x2 - 4x + 4 + 4y2 + 12y + 9
= (x - 2)2 + (2y + 3)2 \(\ge\) 0
CL
0
\(\left(x^2-2xy+y^2-2x+2y+1\right)+\left(x^2+6x+\frac{9}{4}\right)+\left(5-\left(1+\frac{9}{4}\right)\right)=\left(x-y-1\right)^2+\left(x+1\right)^2+\frac{25}{4}\ge\frac{25}{4}\)
đẳng thúc khi :\(\left\{\begin{matrix}x+\frac{3}{2}=0\\x-y-1=0\end{matrix}\right.\)=> x=...;y=...