K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016

Ta có: C = (2x - 3 ) ( 4 + 3x) 

             = (2x-3).4 + (2x-3).3x

             = 8x - 12 + 30x - 9x

             = 29x - 12

 Vậy giá trị nhỏ nhất là : x = 0 ; C = -12

21 tháng 5 2016

Ta có :   C = ( 2x-3)(4+3x)

                = (2x-3).4 + (2x-3)

                = 8x - 12 + 30x - 9x

                = 29x -12 

        Vậy giá trị nhỏ nhất là : x = 0 ; c = -12

18 tháng 12 2020

Có: \(3x-4y=0 \Leftrightarrow y=\dfrac{3x}{4}\)

Thay vào biểu thức A được: 

\(A=x^2+\Bigg(\dfrac{3x}{4}\Bigg)^2 \)

Vì \(x^2 ≥0 ; \Bigg(\dfrac{3x}{4}\Bigg)^2 ≥0\)

\(\Rightarrow A_{min} \Leftrightarrow x=0 \Rightarrow y=0\)

Vậy \(\Rightarrow A_{min} \Leftrightarrow x=y=0\).

21 tháng 12 2020

cam on nha banvui

15 tháng 2 2018

\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

15 tháng 2 2018

giải tiếp : 

Vì \(x^2+x+1=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

                            \(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên  \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu "=" xảy ra khi và chỉ khi  \(x=-\frac{1}{2}\)

10 tháng 7 2017

Ta có : \(\left|2x-5\right|+\left|7-2x\right|\ge\left|2x-5+7-2x\right|\forall x\)

\(\Leftrightarrow\left|2x-5\right|+\left|7-2x\right|\ge2\forall x\)

\(\Rightarrow A_{min}=2\)

9 tháng 3 2020

bài này lm kiểu j z các bn

14 tháng 7 2015

a)Ta có: |x+3|>=0

=>|x+3|+15>=15 hay A>=15

Nên GTNN của A là 15 khi:

x+3=0

x=0-3

x=-3

b)B=|2x+1|-2015

Ta có: |2x+1|>=0

=>|2x+1|-2015>=-2015 hay B>=-2015

Nên GTNN của B là -2015 khi:

2x+1=0

2x=0-1

x=-1/2

c)C=|3x-4|+|y-1|+17

Ta có: |3x-4|>=0

|y-1|>=0

=>|3x-4|+|y-1|+17>=17 hay C>=17

Nên GTNN của C là 17 khi:

3x-4=0                        hay y-1=0

3x=0+4                             y=0+1

x=4/3                                y=1

16 tháng 8 2020

a.

+) Với x lớn hơn hoặc bằng 0

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)

\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)

Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0

+) Với x < - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)

\(=2020-2x-3-2x=2017-4x\ge2017\)

Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)

+) Với x = - 1

\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)

\(=2020+2+1=2023\left(tm\right)\)

Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)

9 tháng 5 2016

a)Ix+1/6l\(\ge\)0

=>lx=1/6l có gtnn=0 

b)Như trên ta cũng có lx-1/3l có gtnn =0

c)Như trên ta cũng có  l3x-1l có gtnn=0

d)4l3+2xl+1\(\ge\)1

=>4l3x+2xl+1 có gtnn=1

9 tháng 5 2016

a/ Biểu thức đạt giá trị nhỏ nhất là 0 khi x=-1/6.

b/ Biểu thức đạt giá trị nhỏ nhất là 0 khi x=1/3.

c/ Biều thức đạt giá trị nhỏ nhất là 0 khi x=1/3.

d/ Biểu thức đạt giá trị nhỏ nhất là 1 khi x=-3/2.