\(4x^2-4x+999+4x\left(1+x^3\right)\)là.........

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2015

A = 4x- 4x + 999 + 4x(1+ x3) = 4x[x - 1 + (1+x3) ] + 999

                                              = 4x( x -1+1+x3) + 999

                                              = 4x( x + x3) + 999

                                              = 4x2 + 4x+ 999

                                              = (2x)+ (2x2)2 + 999 
Vì (2x)+ (2x2)luôn > 0 với mọi x 
=> (2x)+ (2x2)+ 999 > 999 
Vậy Amin= 999 <=> x = 0

17 tháng 7 2018

\(C=4x^2+3+4x\)

\(C=\left[\left(2x\right)^2+2.2x+1\right]+2\)

\(C=\left(2x+1\right)^2+2\)

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+1\right)^2+2\ge2\forall x\)

\(C=2\Leftrightarrow\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy \(C=2\Leftrightarrow x=-\frac{1}{2}\)

5 tháng 10 2019

\(Q=\left(x-3\right)\left(4x+5\right)+2019\)

\(=4x^2-7x-15+2019\)

\(=4x^2-7x+2004\)

\(=\left(2x-\frac{7}{4}\right)^2+\frac{32015}{16}\ge\frac{32015}{16}\forall x\)

Dấu "=" xảy ra<=>\(\left(2x-\frac{7}{4}\right)^2=0\Leftrightarrow2x=\frac{7}{4}\Leftrightarrow x=\frac{7}{8}\)

5 tháng 10 2019

Giúp mk phần 2 vs m.n ơi

NV
24 tháng 6 2019

b/ \(3-100x+8x^2=8x^2+x-300\)

\(\Leftrightarrow-101x=-303\)

\(\Rightarrow x=3\)

c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-79x=-158\)

\(\Rightarrow x=2\)

d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

\(\Leftrightarrow-6x=5\)

\(\Rightarrow x=-\frac{5}{6}\)

e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)

\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)

\(\Leftrightarrow13x=130\)

\(\Rightarrow x=10\)

NV
24 tháng 6 2019

\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=2\)

\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)

\(\Rightarrow C_{max}=21\) khi \(x=-4\)

\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)

\(\Rightarrow E_{max}=5\) khi \(x=2\)

18 tháng 10 2019

Mình đang cần gấp . Đảm bảo k trả đầy đủ + kb :'>

18 tháng 10 2019

2.    \(Q=\left(x-3\right)\left(4x+5\right)+2019\)

        \(Q=4x^2+5x-12x-15+2019\)   

        \(Q=4x^2-7x+2004\)  

        \(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\) 

        \(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)  

        \(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)  

        \(\Rightarrow Q\ge\frac{32255}{16}\) 

         \(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)

3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)  

   \(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\) 

   \(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)  (do a+b=1)

   \(T=4a^2-4ab+4a^2-6a^2-6b^2\) 

   \(T=-2a^2-4ab-2b^2\)

   \(T=-2\left(a^2+2ab+b^2\right)\) 

   \(T=-2\left(a+b\right)^2\)

   \(T=-2.1^2=-2.1=-2\) (do a+b=1)

   

8 tháng 2 2019

\(B=\frac{x^2+4x+85}{3\left(x+2\right)}=\frac{\left(x^2-14x+49\right)+\left(18x+36\right)}{3\left(x+2\right)}\)

\(=\frac{\left(x-7\right)^2+18\left(x+2\right)}{3\left(x+2\right)}=\frac{\left(x-7\right)^2}{3\left(x+2\right)}+6\ge6\forall x>0\)

Dấu "=" xảy ra khi: \(x-7=0\Leftrightarrow x=7\)

19 tháng 10 2018

a, A = (x-1)(x+6) (x+2)(x+3)

= (x^2 + 5x -6 ) (x^2 + 5x + 6)

Đặt t = x^2 +5x 

A= (t-6)(t+6)

= t^2 - 36

GTNN của A là -36 khi và ck t= 0

<=> x^2 +5x = 0

<=> x=0 hoặc x=-5

Vậy...

20 tháng 11 2017

em chịu ạ! Tịt rùi! 

25 tháng 12 2020

a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)

\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)