K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2020

Từ đề bài, ta suy ra:

\(x^2-x+2009\)

\(=\left(x^2-x+\frac{1}{4}\right)+2008,75\)

\(=\left(x-\frac{1}{2}\right)^2+2008,75\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)nên GTNN của biểu thức là 2008,75

7 tháng 3 2020

\(x^2-x+2019=x^2-x+\frac{1}{4}+\frac{8075}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{8075}{4}\ge\frac{8075}{4}\)

Dấu "=" khi \(x=\frac{1}{2}\)

7 tháng 3 2016

A=\(\frac{x^2-2x+2010}{x^2}=1-2.\frac{1}{x}+\frac{2010}{x^2}=2010.\left(\frac{1}{2010}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}\right)\)

=\(2010.\left(\frac{1}{2010^2}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}+\frac{2009}{2010^2}\right)=2010\left(\frac{1}{2010^2}-2.\frac{1}{2010}.\frac{1}{x}+\frac{1}{x^2}\right)+\frac{2009}{2010}\)

\(=2010.\left(\frac{1}{2010}-\frac{1}{x}\right)^2+\frac{2009}{2010}\)

tự làm típ

7 tháng 1 2016

2A=[x2+2xy+y2-2(x+y)+1]+(x2-4x+4)+(y2-4y+4)-2018

=(x+y-1)+(x-2)2+(y-2)2-2018

Min=1006 tai x=2=y

 

7 tháng 11 2021

Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

7 tháng 11 2021

ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)

\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)

\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)

\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)

Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)

do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)

Dấu "=" xảy ra khi x-2y+1=0 và y+1=0

ta có:

y+1=0=>y=0-1=>y=-1

thay y=-1 và x-2y+1=0

=>x-2.(-1)+1=0

=>x+2+1=0

=>x+2=-1

=>x=-1-2

=>x=-3

vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

1/

Áp dụng BĐT Bunhiacopxky:

$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$

$\Rightarrow 3(a^2+b^2+c^2)\geq 4$

$\Rightarrow a^2+b^2+c^2\geq \frac{4}{3}$

Vậy GTNN của biểu thức là $\frac{4}{3}$. Giá trị này đạt tại $a=b=c=\frac{2}{3}$

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

2/

Áp dụng BĐT Cô-si:

$x+2007\geq 2\sqrt{2007x}$

$\Rightarrow (x+2007)^2\geq (2\sqrt{2007x})^2=8028x$

$\Rightarrow P=\frac{x}{(x+2007)^2}\leq \frac{x}{8028x}=\frac{1}{8028}$

Vậy $P_{\max}=\frac{1}{8028}$ khi $x=2007$

 

17 tháng 10 2020

\(x+y+z=0< =>\left(x+y+z\right)^2=0< =>x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(< =>x^2+y^2+z^2=0< =>x=y=z=0\)

\(B=\left(-1\right)^{2007}+0+1^{2009}=0\)

17 tháng 10 2020

x+y+z=0 

\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2=0\)( vì xy+yz+zx=0)

Mà \(x^2+y^2+z^2\ge0\forall x,y,z\Rightarrow x=y=z=0\)

\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)

= -1+0+1=0

Vậy B=0